Fundamentals of Thermodynamics
eBook - ePub

Fundamentals of Thermodynamics

John H. S. Lee, K. Ramamurthi

Buch teilen
  1. 146 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Fundamentals of Thermodynamics

John H. S. Lee, K. Ramamurthi

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

A concise treatment of the fundamentals of thermodynamics is presented in this book. In particular, emphasis is placed on discussions of the second law, a unique feature of thermodynamics, which states the limitations of converting thermal energy into mechanical energy. The entropy function that permits the loss in the potential of a real thermodynamic process to be assessed, the maximum possible work in a process, and irreversibility and equilibrium are deduced from the law through physical and intuitive considerations. They are applicable in mitigating waste heat and are useful for solving energy, power, propulsion and climate-related issues.

The treatment is not restricted to properties and functions of ideal gases. The ideal gas assumption is invoked as a limiting case. Reversible paths between equilibrium states are obtained using reversible heat engines and reversible heat pumps between environment and systems to determine the entropy changes and the maximum work. The conditions of thermodynamic equilibrium comprising mechanical, thermal, chemical and phase equilibrium are addressed and the species formed at equilibrium in a chemical reaction at a given temperature and pressure are obtained. The molecular basis for the laws of thermodynamics, temperature, internal energy changes, entropy, reversibility and equilibrium are briefly discussed.

The book serves as a reference for undergraduate and graduate students alongside thermodynamics textbooks.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Fundamentals of Thermodynamics als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Fundamentals of Thermodynamics von John H. S. Lee, K. Ramamurthi im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Physical Sciences & Energy. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2022
ISBN
9781000533200
Auflage
1
Thema
Energy

1 Fundamental Concepts

DOI: 10.1201/9781003224044-1

1.1 System and Environment

Thermodynamics is a study of the interaction of a system with its environment. A system is part of the universe contained within a prescribed boundary that we deal with. Everything outside the boundary is called the environment. Thus, the system and its environment constitute the universe.
The boundary of a system may be a real physical boundary or could be imaginary. The boundary may be of arbitrary shape and could move when the volume within the boundary changes such as when the system expands or contracts when interacting with the environment.
An isolated system has a boundary that does not permit mass or energy exchange across it. For a closed system, the boundary permits only energy exchange. If mass as well as energy is exchanged across the boundary, the system is called an open system.

1.2 State of a System

The state of a system is defined by a set of measurable macroscopic parameters. The state can be measured only if the variables defining the state are invariant with respect to time and space within the system; that is, the system is in equilibrium. It is the equilibrium state of a system that is defined by the state variables of a system.
State variables that depend on the mass of the system are called extensive variables, for example, energy and volume. State variables that are independent of the mass are called intensive variables, for example, pressure, density and temperature. The specific value of an extensive property is the extensive property divided by the amount of substance, for example, specific volume v=Vm, where V is the volume and m is the mass.

1.3 Simple Systems

We shall be dealing mostly with simple systems. A simple system is one which is homogeneous, isotropic and chemically inert. It is sufficiently large in that surface effects can be neglected. In other words, we may define its energy without considering the surface energy due to the boundary separating the system from the environment. The external forces arising from electromagnetic, gravitational and similar environmental effects are also not considered in contributing to the energy of the simple system. So the simple system can generally be defined solely by its energy U, volume V and amount of mass in the system, that is, (U, V, mi) where mi is the mass of the different chemical components “i” in the system.

1.4 Mass, Molecular Mass and Moles in a System

The mass of a system is the number of molecules N contained in the system multiplied by the mass of each of the molecules in it. Since the mass of a molecule is very small, it is measured in terms of the mass of a standard particle that is chosen to have a mass one-twelfth the mass of an isotope of carbon C12. The mass of the standard particle m0, known as the atomic mass unit (a.m.u.), is 1.661×10−24 g.
The mass of a molecule of a substance is therefore expressed in units of the standard atomic mass unit m0, namely, mass of the molecule m divided by m0, that is, M=mm0. M is called the molecular mass.
As an example, the molecular mass of a hydrogen molecule is given as MH2=mH2m0, where mH2 is the mass of the hydrogen molecule and m0 is the mass of the standard particle. It is also spoken of as molecular weight since almost all experiments are carried out in the vicinity of the Earth’s surface where the gravitational constant is the same. We will use the words molecular mass and molecular weight without differentiating between them.
The number of molecules in a macroscopic system is, in general, very large, and we therefore measure it in the unit of mole. A mole is defined as the number of standard particles N0 in 1 g of it, that is, N0=1m0=11.661×1024=6.023×1023, N0 is called Avogadro number.
The number of the moles of a substance comprising of N molecules is n=NN0.
We can write the molecular mass as
M=mm0=mm0N0N0=mN0(1.1)
since m0N0 = 1 g.
The molecular mass M therefore equals mN0 in unit of grams and is the mass of 1 mole of the substance in grams. Thus, 1 mole of hydrogen has a mass equal to 2 g, and 1 mole of nitrogen is 28 g and so on. Similarly, the number of moles n of a substance of mass m g is m/M.
For a mixture of gases consisting of N different constituents, the mole fraction of the ith constituent in it is
xi=nii=1i=Nni
where ni mole is the number of moles of the ith constituent in it and i=1i=Nni is the total number of moles in the mixture.
Similarly, if the mass of the ith constituent is mi, the mass concentration of the ith constituent is
yi=mii=1i=Nmi
The sum of the mole fractions and mass fractions is unity, namely,
i=1Nxi=1 ,i=1Nyi=1

1.5 Intensive Variables Defining a System

Energy U, volume V and mass m or equivalently the moles n, which define a system, are based on the extent of a system. The energy per unit mass u=Um and the specific volume v=Vm are independent of the extent and are intensive variables. In the following, we define the intensive variables pressure and temperature for defining a simple system. These are independent of its extent and are the so-called intensive variables.

1.5.1 Pressure

The pressure p is the force per unit area and act...

Inhaltsverzeichnis