
Maschinelle Lernalgorithmen zur Selbstoptimierung in verteilten Produktionssystemen basierend auf spieltheoretischen Konzepten
- 148 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Maschinelle Lernalgorithmen zur Selbstoptimierung in verteilten Produktionssystemen basierend auf spieltheoretischen Konzepten
Über dieses Buch
Die Dissertation beschäftigt sich mit der Entwicklung von maschinellen Lernalgorithmen zur Selbstoptimierung in verteilten Produktionssystemen basierend auf spieltheoretischen Konzepten sowie deren Implementierung auf industriellen Steuerungssystemen. Ausgehend von einer bestimmten spieltheoretischen Spielgattung, den Potentialspielen, die sich durch Ihre Beschaffenheit und Eigenschaften besonders gut zur Lösung von verteilten Optimierungsproblemen eignen, werden diese in den Nutzenfunktionen um einen Zustandsraum ergänzt. Eine Modellierung von modular aufgebauten Produktionsanlagen auf Basis der Graphentheorie mit alternierenden Sequenzen von Zuständen und Aktionen zur Formung des Spielaufbaus, erlaubt die formal beweisbare Aufstellung eines solchen zustandsbasierten Potentialspiels. Diese Art des Spielkonzepts ermöglicht das Lösen von Mehrziel-Optimierungsproblemen mithilfe von maschinellen Lernalgorithmen. Als Optimierungsziele innerhalb von Produktionssystemen werden exemplarisch das Produktionsziel, die Einhaltung von Produktionsprozessbeschränkungen sowie die Reduktion des Energieverbrauchs festgelegt. Die verschiedenen im Rahmen dieser Arbeit entwickelten Lernalgorithmen unterscheiden sich in dem Grad des genutzten Vorwissens, in den Lernregeln selbst sowie in spezifischen Merkmalen im Lernmechanismus, wie z.B. Kommunikation oder Gedächtnis. Als Anwendungsbeispiel dient eine Schüttgutanlage bestehend aus vier Stationen. Ein Vergleich der Ergebnisse mit verschiedenen state-of-the-art Algorithmen unterstreicht die Wirksamkeit der neuen Lernverfahren. Zudem werden Plug-and-Play Funktionen sowie die Generalisierungsfähigkeit der neuen Algorithmen erfolgreich getestet. Die effiziente Implementierung auf der Schüttgutanlagen-SPS bestärkt die industrielle Relevanz.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
- Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.