Deep Learning-basierte Optimierung der automatischen optischen Qualitätssicherung in einer Elektronik-Fertigung
eBook - PDF

Deep Learning-basierte Optimierung der automatischen optischen Qualitätssicherung in einer Elektronik-Fertigung

  1. 261 Seiten
  2. German
  3. PDF
  4. Über iOS und Android verfügbar
eBook - PDF

Deep Learning-basierte Optimierung der automatischen optischen Qualitätssicherung in einer Elektronik-Fertigung

Über dieses Buch

Eine der größten Herausforderungen bei der Fertigung von Elektronikprodukten für den Automotive-Bereich liegt in der Sicherstellung der Funktionalität des Endproduktes. Die uneingeschränkte Zuverlässigkeit der Automobilelektronik ist maßgeblich für die Sicherheit aller Verkehrsteilnehmer. Folglich ist die Überwachung der Produktqualität in diesem Sektor von höchster Wichtigkeit. Aus diesem Grund werden automatische, optische Inspektionssysteme als zerstörungsfreie Prüfprozesse in den Fertigungslinien integriert, um Fehler an der Leiterplatte, den Bauteilen oder Lötstellen in Echtzeit zu identifizieren. Viele optische Prüfprozesse weisen zum aktuellen Zeitpunkt noch einige Problemstellungen auf, die mit bisherigen Methoden nicht vollständig zufriedenstellend gelöst werden können. Während die meisten optischen Prüfprozesse nur die bloße Existenz eines Fehlers bestimmen können, bietet der zusätzlich Einsatz von mit künstlicher Intelligenz gestützten Klassifizierungssystemen eine Möglichkeit, die genauen Details über den Qualitätszustand der Baugruppen in Erfahrung zu bringen. Im Rahmen dieser Dissertation wird ein auf Deep Learning gestütztes Klassifizierungs-Konzept als zusätzliches Prüfverfahren für die Echtzeitanalyse von elektrischen Baugruppen im Produktionsumfeld vorgestellt, um die Prüfgenauigkeit der Prozesse weiter zu erhöhen und das Risiko von unentdeckten oder falsch diagnostizierten Fehler zu minimieren. Dabei wird gezeigt, dass die Qualitätssicherung sowohl die Digitalisierung als auch die Automatisierung der Produktionsanlagen entscheidend mitbestimmt.

Häufig gestellte Fragen

Ja, du kannst dein Abo jederzeit über den Tab Abo in deinen Kontoeinstellungen auf der Perlego-Website kündigen. Dein Abo bleibt bis zum Ende deines aktuellen Abrechnungszeitraums aktiv. Erfahre, wie du dein Abo kündigen kannst.
Nein, Bücher können nicht als externe Dateien, z. B. PDFs, zur Verwendung außerhalb von Perlego heruntergeladen werden. Du kannst jedoch Bücher in der Perlego-App herunterladen, um sie offline auf deinem Smartphone oder Tablet zu lesen. Weitere Informationen hier.
Perlego bietet zwei Abopläne an: Elementar und Erweitert
  • Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
  • Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Beide Abopläne sind mit monatlichen, halbjährlichen oder jährlichen Abrechnungszyklen verfügbar.
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Achte auf das Symbol zum Vorlesen bei deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ja! Du kannst die Perlego-App sowohl auf iOS- als auch auf Android-Geräten nutzen, damit du jederzeit und überall lesen kannst – sogar offline. Perfekt für den Weg zur Arbeit oder wenn du unterwegs bist.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.
Ja, du hast Zugang zu Deep Learning-basierte Optimierung der automatischen optischen Qualitätssicherung in einer Elektronik-Fertigung von Alida Ilse Maria Schwebig im PDF- und/oder ePub-Format. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Shaker
Jahr
2021
eBook-ISBN:
9783844080254
Auflage
1

Inhaltsverzeichnis