The Bible and the Holographic Universe
eBook - ePub

The Bible and the Holographic Universe

A Christian's Practical Guide to the Universe, the Multiverse, and the Bibleverse

Cynthia C. Polsley

Buch teilen
  1. 174 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

The Bible and the Holographic Universe

A Christian's Practical Guide to the Universe, the Multiverse, and the Bibleverse

Cynthia C. Polsley

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

From holographic illusions, simulated worlds, and parallel universes to the multiverse, from The Matrix, Star Trek, Marvel and DC Comics to Netflix and mobile games, today's popular imagination is caught up with realities beyond our own. Decades ago, cosmologists speculated that our universe might be a gigantic holographic image. Since then, the "holographic principle" has only gained traction. What is the holographic universe, and how does it align with the Bible's picture of reality and Jesus Christ? Are we a computer simulation? Did aliens spark human life? Is a multiverse a problem for God? Do "time" and "free will" exist? What does it all mean for Christians?Introducing the holographic principle and exploring implications of other worlds through a Christian lens, this basic guide gives individuals and small groups a perspective of eternal investment, prayer, study, and intentional living that focuses on the Bible as the unchanging source of truth, presenting practical information for sorting fact from fiction, engaging with modern culture, and finding a firmer worldview in Christ. Not only is a holographic universe no threat to the Gospel, but the Bible points to a higher reality--hinting at the fingerprints of God in holographic theory.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist The Bible and the Holographic Universe als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu The Bible and the Holographic Universe von Cynthia C. Polsley im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Theology & Religion & Religion & Science. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2022
ISBN
9781666792812
1

The Holographic Principle

Yea, the darkness hideth not from thee;
but the night shineth as the day:
the darkness and the light are both alike to thee. (Ps 139:12)
A. What Is a Hologram?
The term “holographic image” is often popularly conflated with “hologram.” Here, I will use the two words “hologram” and “holograph” fairly interchangeably, reflecting their use in popular culture. Technically, the two terms “hologram” and “holograph” denote different elements of holography. A holographic image is like a three-dimensional photograph. When we talk about holograms in casual conversations about science fiction movies or three-dimensional pictures like those on postcards or children’s playing cards, we frequently mean holographic images. Merriam-Webster Dictionary describes a hologram as “a picture of a ‘whole’ object.”1 Science writer Chris Woodford calls a hologram “a cross between what happens when you take a photograph and what happens when you look at something for real.”2
A photograph records patterns of light. The light reflected by a certain object is captured by the photograph, creating a two-dimensional picture of the object. Coined by Sir John Herschel in 1839, the word “photograph” explains the process of taking a photograph. The first half of the word, photo-, is derived from the Greek φῶς (phōs), “light”;3 the second, -graph, is from γράφος (graphōs), related to the verb form γράφω (graphō): “to write,” “to inscribe,” or “to draw,” all developed from an original sense of “scratch.”4 The process of making a “graph” involves inscribing and drawing or marking. Accordingly, a photograph inscribes and records the light that bounces off an object.
A holograph records light more accurately and realistically than a conventional photograph. While a photograph is flat, a hologram is three-dimensional. It looks as if it has length, width, and height. It can also look as if it is moving in relation to the person who is looking at it. Holograms are created by shining a split laser beam on an object. When we recombine the different parts of the original beam before it was split, we have a recording of how the object appears from multiple angles.5 The holographic recording captures an image of the object as more than a flat surface in a picture, and as something with depth, shape, and other 3D elements.
A hologram is the imprint produced in the process of recording the holographic image, which, again, is a 3D picture of something.6 (Notably, as recognized in legal contexts, a holograph is something that is specifically handwritten by its author. What does this imply about the universe having an author?) The 3D picture of a holographic image is a whole picture. In fact, this terminology reflects the etymology for the word “holograph.” The word is taken from the ancient Greek words ὅλος (holos), meaning “whole” or “entire,” and γράφος (graphos), derived from the same verb as the ending of photo-graph, γράφω (graphō). A holograph is something that is recorded in its entirety.7
B. The Universe as a Holographic Image
The “holographic principle” came to the fore in the 1990s as a response to earlier questions about what happens when information “falls into” a black hole in space. At the time, scientists were working to figure out how black holes fit into the laws of thermodynamics. A black hole is an extremely dense object in outer space. It is created when “so much mass or energy gathers in a small volume that gravitational forces overwhelm all others and everything collapses under its own weight.”8 The material in the object gathers into a tiny condensed area called “the singularity,” surrounded by a conceptual threshold between “black hole space” and “normal space.” There are at least four different types of black holes.
Originally, black holes presented a problem related to the laws of thermodynamics. According to the first law, conservation of energy, all of the energy in the universe remains constant. Even though energy can change form, it cannot be created or destroyed. The second law describes the process of entropy. Entropy is the increasing disorder in the universe as energy changes into less usable forms. Every time energy is transferred, the transferral involves work. Some energy is lost: it becomes less usable. The universe is always increasing in entropy, moving closer to disorder and reducing its usable energy.
But what about energy and black holes? If everything that goes into a black hole disappears forever, as Einstein’s laws of relativity predicted, is the entropy lost? In trying to answer this question through mathematical models, physicists concluded that the second law of thermodynamics is upheld. Their findings also suggested something else that was very interesting: the amount of information inside a bounded physical system, like a black hole, is reflected in the system’s surface area. Entropy is related to area, and not to volume. In other words, all of the information contained in the system is encoded on the surface. When it comes to a black hole, what you see really is what you get, because you see on the surface everything that the black hole contains.
This revelation was astonishing. It changes the way we think about information and space. Every bit of information inside something that is three-dimensional is actually visible as a two-dimensional picture on the same object’s surface. The 3D picture is not what shows from the outside. Instead, it’s defined by its 2D boundaries. Someone outside of a contained system sees all of the information inside the system like a 2D flat picture, and not a 3D region with shapes and contours. The same principle is thought to apply to the “system” that is our universe and its contents. We may think our world is built of shapes, but from the outside, the shapes are flat, like geometrical planes drawn on a piece of paper.
Of course, our universe has more than two or three dimensions. Time is widely recognized as the fourth dimension. Currently, string theory postulates ten dimensions in the universe.9 Other more hypothetical versions of superstring theory posit twenty-six dimensions.10 Chuck Missler has noted that Nachmanides (AD 1194–1270), a scholar of ancient Hebrew, deduced the existence of ten dimensions from studying the book of Genesis alone. Missler gives a possible contextualization for the dimensions:
There is a provocative conjecture...

Inhaltsverzeichnis