Bio-Electrochemical Systems
eBook - ePub

Bio-Electrochemical Systems

Waste Valorization and Waste Biorefinery

Kuppam Chandrasekhar, Satya Eswari Jujjavarapu, Kuppam Chandrasekhar, Satya Eswari Jujjavarapu

Buch teilen
  1. 180 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Bio-Electrochemical Systems

Waste Valorization and Waste Biorefinery

Kuppam Chandrasekhar, Satya Eswari Jujjavarapu, Kuppam Chandrasekhar, Satya Eswari Jujjavarapu

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book addresses electro-fermentation for biofuel production and generation of high-value chemicals and biofuels using organic wastes. It covers the use of microbial biofilm and algae-based bioelectrochemical systems (BESs) for bioremediation and co-generation of valuable chemicals, including their practical applications. It explains BES design, integrated approaches to enhance process efficiency, and scaling-up technology for waste remediation, bio-electrogenesis, and resource recovery from wastewater.

Features:



  • Provides information regarding bioelectrochemical systems, mediated value-added chemical synthesis, and waste remediation and resource recovery approaches.


  • Covers the use of microbial biofilm and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals.


  • Explains waste-to-energy related concepts to treat industrial effluents along with bioenergy generation.


  • Deals with various engineering approaches for chemicals production in eco-friendly manner.


  • Discusses emerging electro-fermentation technology.

This book is aimed at senior undergraduates and researchers in industrial biotechnology, environmental science, civil engineering, chemical engineering, bioenergy and biofuels, and wastewater treatment.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Bio-Electrochemical Systems als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Bio-Electrochemical Systems von Kuppam Chandrasekhar, Satya Eswari Jujjavarapu, Kuppam Chandrasekhar, Satya Eswari Jujjavarapu im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Biological Sciences & Microbiology. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2022
ISBN
9781000613872

1 Conventional Anaerobic Digestion vs. Bioelectrochemical Treatment Technologies for Waste Treatment

Dhanashri Satav, Pradnya Jadhav, Sakshi Kor, and Shadab Ahmed
Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, India
DOI: 10.1201/9781003225430-1
CONTENTS
  1. 1.1 Introduction
  2. 1.2 Anaerobic Digestion
  3. 1.2.1 Classification of Anaerobic Digestion
  4. 1.2.2 Limitations of Anaerobic Digestion
  5. 1.3 Bioelectrochemical Technologies (BETs)
  6. 1.4 Components Required to Set Up a Treatment Plant
  7. 1.4.1 Anaerobic Digester
  8. 1.4.1.1 Complete Mix—Continuous Stirred Tank Reactor (CSTR)
  9. 1.4.1.2 Up-Flow Anaerobic Sludge Blanket (UASB)
  10. 1.4.1.3 Anaerobic Sequencing Batch Reactor (ASBR) Configurations
  11. 1.4.1.4 Plug Flow
  12. 1.4.1.5 Covered Lagoon
  13. 1.4.1.6 Fixed Film
  14. 1.4.2 Bioelectrochemical Systems or Setups
  15. 1.4.2.1 Electrodes
  16. 1.4.2.2 Chambers
  17. 1.4.2.3 Membrane
  18. 1.4.2.4 Mediators
  19. 1.5 Working of Conventional Anaerobic Digestion and Bioelectrochemical Treatment
  20. 1.5.1 Conventional Anaerobic Digestion
  21. 1.5.2 Working of Bioelectrochemical Treatment
  22. 1.5.2.1 Mechanism
  23. 1.5.2.2 Working of Microbial Fuel Cells (MFCs)
  24. 1.5.2.3 Working of Microbial Electrolysis Cells (MECs)
  25. 1.6 Kinetics and Their Parameters
  26. 1.6.1 Kinetics of Conventional Anaerobic Digestion
  27. 1.6.1.1 Kinetics of Bacterial Growth
  28. 1.6.1.2 Kinetics of Substrate Utilization
  29. 1.6.1.3 Kinetics Studies for Batch Bioreactor
  30. 1.6.1.4 Kinetics Studied for Continuous Bioreactor
  31. 1.6.1.5 Effect of Temperature on the Kinetics of the Anaerobic Process
  32. 1.6.1.6 Effect of pH on the Kinetics of Anaerobic Process
  33. 1.6.2 Kinetics of Bioelectrochemical Treatment
  34. 1.7 Economic Analysis
  35. 1.7.1 Economic Analysis of Conventional Anaerobic Digestion Systems
  36. 1.7.2 Economic Analysis of Bioelectrochemical Treatment
  37. 1.8 By-Products of the Above Treatments and Their Applications
  38. 1.8.1 Biogas
  39. 1.8.2 Biohydrogen
  40. 1.8.3 Volatile Fatty Acids (VFAs)
  41. 1.8.4 Bioplastics
  42. 1.8.5 Biodiesel
  43. 1.9 Conclusions and Future Perspectives
  44. References

1.1 Introduction

What will be the source of energy/fuel in the near future once all the fossils/petroleum are exhausted? The alternative to these is an electrical source of energy. With the focus now shifting to the use of renewable resources for energy or fuel production, the development of new advanced technologies to convert waste into useful energy or fuel becomes even more imminent. What if we combine the two problems and find a single solution? And the solution to this is generating energy in the form of electricity, biofuels, biomethane, biohydrogen, etc. from the waste material. The cost of being dependent on the raw material for generating energy is always high; therefore, a suitably treated waste can serve as a substitute to the conventional raw material to generate energy. Conventional anaerobic digestion (AD) was first demonstrated in the 17th century (the early 1630s) by a Belgian chemist, Jan Baptita Van Helmont. He showed that combustible gases can be obtained by de-composting organic matter. The first sewage plant was built in Bombay in the year 1859. In 1895, England designed a process to recover flammable gases by treating sewage. Two years later, the first biogas plant was set up in Bombay, India. Then, later in the 1930s, the grange waste was used to generate flammable gas to power the street lights of asylum in Bombay. The concept was soon used in the application and in the 1960s, Khadi and Village Industries Commission (KVIC) set up the biogas plant that can be used in rural areas as fuel for cooking and other domestic purposes (Muthudineshkumar & Anand, 2019). Alessandro Volta's experiment in 1776 showed that more amounts of combustible fuel can be produced, using more decaying organic matter. In 1895, England designed the sewage treatment facility and used the by-product generated to light the street lamps in Exeter. Until the early 1960s, China had set up a million biogas plants using the septic tank design as the basis and replaced the dome-shaped tank with a rectangular tank. India followed the same changes and participated in a Biogas Sector Partnership (BSP) along with Nepal and China (Muthudineshkumar & Anand, 2019). With increasing prices of oils and petroleum in the 1980s, the United Kingdom and Europe became interested in the biogas program as an alternative source of energy, which was renewable (Ismail et al., 2014; Wilkinson, 2011). With an increasing demand for energy and the importance of biogas, thus the setup of the first biogas plant in Bombay, India, researchers showed interest and made various modifications to the design of the biogas plant. Among all the plants, Grama Laxmi III was built by Joshbai Patel, which later became a guide for the KVIC floating dome model. The National Biogas and Manure Management program built up to 1,50,000 family-based biogas plants between the years 2009 to 2010 (Davis, 2005; Munasinghe & Khanal, 2010).

1.2 Anaerobic Digestion

Anaerobic digestion is a complex microbiological process in which many anaerobic and facultative bacteria work hand-in-hand/together to break down the complex organic matter into simple forms in anaerobic conditions (Munasinghe & Khanal, 2010, Parkin & Owen, 1986). Initially, the primary objective of anaerobic digestion of wastewater was for the utilization of organic matter, reduction in odor, and conversion of organic matter to methane and carbon dioxide. Thus, the biogas produced is an inexhaustible source of energy that can be utilized in various ways like producing heat, electricity, fuel boilers and furnaces, alternative to fuels for vehicles, and can also be used in households as natural gas pipelines. Today, biogas is cleaned and trace contaminants removed; thus, higher-quality gas is supplied as compressed natural gas (CNG) or liquefied natural gas (LNG). This can be more efficient for the internal combustion of engines and also used for domestic purposes. Anaerobic digestion is greatly used in many technologies, but it has a complex mechanism to understand since the biological factor “microorganisms” are involved, which are affected by slight changes in their environment like temperature, pH, moisture, etc. (Parkin & Owen, 1986; Nasir et al., 2012). The commonly used substrate for anaerobic digestion can be animal manure, food scraps, wastewater treatment solids, and municipal and industrial wastewater residues that are put into a digester to produce biogas (60% methane and 40% carbon dioxide) and digestate. The biogas produced c...

Inhaltsverzeichnis