Experimentation for Engineers
eBook - ePub

Experimentation for Engineers

From A/B testing to Bayesian optimization

David Sweet

  1. 248 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. ├ťber iOS und Android verf├╝gbar
eBook - ePub

Experimentation for Engineers

From A/B testing to Bayesian optimization

David Sweet

Angaben zum Buch
Inhaltsverzeichnis
Quellenangaben

├ťber dieses Buch

Optimize the performance of your systems with practical experiments used by engineers in the world's most competitive industries. In Experimentation for Engineers: From A/B testing to Bayesian optimization you will learn how to: Design, run, and analyze an A/B test
Break the "feedback loops" caused by periodic retraining of ML models
Increase experimentation rate with multi-armed bandits
Tune multiple parameters experimentally with Bayesian optimization
Clearly define business metrics used for decision-making
Identify and avoid the common pitfalls of experimentation Experimentation for Engineers: From A/B testing to Bayesian optimization is a toolbox of techniques for evaluating new features and fine-tuning parameters. You'll start with a deep dive into methods like A/B testing, and then graduate to advanced techniques used to measure performance in industries such as finance and social media. Learn how to evaluate the changes you make to your system and ensure that your testing doesn't undermine revenue or other business metrics. By the time you're done, you'll be able to seamlessly deploy experiments in production while avoiding common pitfalls. About the technology
Does my software really work? Did my changes make things better or worse? Should I trade features for performance? Experimentation is the only way to answer questions like these. This unique book reveals sophisticated experimentation practices developed and proven in the world's most competitive industries that will help you enhance machine learning systems, software applications, and quantitative trading solutions. About the book
Experimentation for Engineers: From A/B testing to Bayesian optimization delivers a toolbox of processes for optimizing software systems. You'll start by learning the limits of A/B testing, and then graduate to advanced experimentation strategies that take advantage of machine learning and probabilistic methods. The skills you'll master in this practical guide will help you minimize the costs of experimentation and quickly reveal which approaches and features deliver the best business results. What's inside Design, run, and analyze an A/B test
Break the "feedback loops" caused by periodic retraining of ML models
Increase experimentation rate with multi-armed bandits
Tune multiple parameters experimentally with Bayesian optimization About the reader
For ML and software engineers looking to extract the most value from their systems. Examples in Python and NumPy. About the author
David Sweet has worked as a quantitative trader at GETCO and a machine learning engineer at Instagram. He teaches in the AI and Data Science master's programs at Yeshiva University. Table of Contents
1 Optimizing systems by experiment
2 A/B testing: Evaluating a modification to your system
3 Multi-armed bandits: Maximizing business metrics while experimenting
4 Response surface methodology: Optimizing continuous parameters
5 Contextual bandits: Making targeted decisions
6 Bayesian optimization: Automating experimental optimization
7 Managing business metrics
8 Practical considerations

H├Ąufig gestellte Fragen

Wie kann ich mein Abo k├╝ndigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf ÔÇ×Abo k├╝ndigenÔÇť┬áÔÇô ganz einfach. Nachdem du gek├╝ndigt hast, bleibt deine Mitgliedschaft f├╝r den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich B├╝cher herunterladen?
Derzeit stehen all unsere auf Mobilger├Ąte reagierenden ePub-B├╝cher zum Download ├╝ber die App zur Verf├╝gung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die ├╝brigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht m├Âglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Abopl├Ąnen?
Mit beiden Abopl├Ąnen erh├Ąltst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12┬áMonate gerechnet im Vergleich zum Monatsabo rund 30┬á%.
Was ist Perlego?
Wir sind ein Online-Abodienst f├╝r Lehrb├╝cher, bei dem du f├╝r weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erh├Ąltst. Mit ├╝ber 1┬áMillion B├╝chern zu ├╝ber 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterst├╝tzt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem n├Ąchsten Buch, um zu sehen, ob du es dir auch anh├Âren kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Experimentation for Engineers als Online-PDF/ePub verf├╝gbar?
Ja, du hast Zugang zu Experimentation for Engineers von David Sweet im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Computer Science & Data Processing. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
Manning
Jahr
2023
ISBN
9781638356905

Inhaltsverzeichnis

  1. inside front cover
  2. Experimentation for Engineers
  3. Copyright
  4. dedication
  5. contents
  6. front matter
  7. 1 Optimizing systems by experiment
  8. 2 A/B testing: Evaluating a modification to your system
  9. 3 Multi-armed bandits: Maximizing business metrics while experimenting
  10. 4 Response surface methodology: Optimizing continuous parameters
  11. 5 Contextual bandits: Making targeted decisions
  12. 6 Bayesian optimization: Automating experimental optimization
  13. 7 Managing business metrics
  14. 8 Practical considerations
  15. Appendix A Linear regression and the normal equations
  16. Appendix B One factor at a time
  17. Appendix C Gaussian process regression
  18. index
  19. inside back cover