
Unterstützung der Graphen- und Heuristikbasierten Topologieoptimierung crashbelasteter Strukturen durch Reinforcement Learning
- 238 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Unterstützung der Graphen- und Heuristikbasierten Topologieoptimierung crashbelasteter Strukturen durch Reinforcement Learning
Über dieses Buch
In dieser Dissertation wird eine neue Heuristik für die Graphen- und Heuristikbasierte Topologieoptimierung (GHT) vorgestellt, welche ergänzend und konkurrierend zu den bestehenden Expertenregeln antritt. Durch Methoden des Reinforcement Learnings (RL) lernt das der Heuristik zugrundeliegende Machine-Learning-Modell, der Agent, selbstständig eine Strategie an, um die zu optimierende Struktur durch Topologieänderungen zu versteifen. Dazu wird eine zellenbasierte RL-Umgebung vorgestellt, welche eine konsistente Beschreibung von lokalen Bereichen in den Strukturgraphen ermöglicht. Die Zelle definiert den Bereich, in dem die Heuristik Topologiemodifikationen vornehmen kann. Durch ein neu entwickeltes Formabweichungsmaß wird die Steifigkeit einer Zelle rein geometrisch beschrieben. Das Training der Agenten basiert auf einem dreistufigen Prozess, bei dem in den ersten beiden Stufen systematisch nach geeigneten Trainingsparametern gesucht wird. In der dritten Stufe soll die Strategie des Agenten durch Transferlernen weiter generalisiert werden. Neben der versteifenden Heuristik wird diskutiert, wie und ob auf Basis des vorgestellten Ansatzes eine weitere RL-Heuristik entwickelt werden kann, welche die Strukturen nachgiebiger macht.Die strukturversteifende Heuristik wird in verschiedenen praktischen GHT-Optimierungen auf ihre Performance und den Mehrwert für die GHT hin untersucht. Analysiert wird ein Rahmenmodell, ein Biegeträger und ein Schwellerausschnitt in unterschiedlichen Crashlastfällen. In vielen Optimierungen hat sich gezeigt, dass die RL-Heuristik erfolgreich eingesetzt werden kann und den Optimierungsprozess zu einer besseren Struktur gegenüber einer Vergleichsoptimierung ohne RL-Heuristik führt.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.