
Eine Architektur für maschinelles Transfer-Lernen in industriellen Automatisierungssystemen
- 158 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Eine Architektur für maschinelles Transfer-Lernen in industriellen Automatisierungssystemen
Über dieses Buch
Industrielles Transfer-Lernen ermöglicht einen breiteren Einsatz von maschinellem Lernen in der Industrieautomatisierung, indem es die praktischen Herausforderungen konventionellen Deep Learnings überwindet: Lernalgorithmen müssen zwischen Anlagen und über Prozessgrenzen hinweg übertragbar sein und dabei Daten unterschiedlicher Qualität, Dimensionalität und Herkunft verwenden können, um mit geringen Anpassungsaufwänden auf Veränderungen der betrachteten (Teil-)Probleme reagieren zu können.In dieser Arbeit wurde mittels Design Science Research angelehnt an Dual-Memory-Methoden und den Parametertransfer (Feinabstimmung) im Bereich der visuellen Objekterkennung eine modulare Architektur für industrielles Transfer-Lernen entwickelt: Eine statische, aber Anwendungsfall-spezifische Eingangsdatenverarbeitung führt eine Merkmalsextraktion aus. Die resultierenden Merkmalsvektoren können in der Folge über Clustering mit bereits bekannten Merkmalsvektoren im Transfermodul verglichen und von einem einfach nachtrainierbaren Ausgangsmodul weiterverarbeitet werden.Zur Evaluation dieser Architektur wurden prototypische Realisierungen in drei Industrie-typischen Anwendungsfällen untersucht: Für die Pumpen einer Hydraulikpresse, die häufig wechselnde Produkte fertigt, wurde auf Basis von Druckverläufen eine Anomaliedetektion implementiert. Über einen Vergleich von Verläufen neuer Produkte mit denen bereits bekannter konnte eine deutliche Reduktion der benötigten Trainingsdatenmenge sowie eine gesteigerte Robustheit des Algorithmus erzielt werden. Für unter unterschiedlichen Einsatzbedingungen genutzte elektromechanische Relais wurde eine Ausfallvorhersage implementiert. Auch hier wurden über Vergleiche zwischen neuen Einsatzbedingungen mit bekannten Einsatzbedingungen deutliche Verbesserungen der Vorhersagegenauigkeit auch bei reduzierter Trainingsdatenmenge erreicht. Für unter unterschiedlichen Einsatzbedingungen genutzte Kugellager wurde auf Basis von Vibrationsdaten eine Ausfallvorhersage implementiert. Mittels Domänen-Adaption konnten hierbei erfolgreich Zusammenhänge aus bekannten, gelabelten Einsatzbedingungen auf neue, ungelabelte Einsatzbedingungen übertragen werden.Im Rahmen der Evaluation konnte gezeigt werden, dass die vorgeschlagene Architektur auch mit wenigen Trainingsdaten robust gute Vorhersagequalitäten gewährleisten kann und so bspw. auch dynamische Probleme lösbar macht. Sie bietet darüber hinaus Ansätze, um auch auf ungelabelten Daten Regressions- oder Klassifikationsaufgaben ausführen zu können, und ermöglicht mit ihrem modularen Aufbau ein hohes Maß an Wiederverwendbarkeit.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.