
Likelihood-basierte Entscheidungstheorie unter Unsicherheit. Das Minimax-Prinzip und das Bayes-Prinzip
- 29 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Likelihood-basierte Entscheidungstheorie unter Unsicherheit. Das Minimax-Prinzip und das Bayes-Prinzip
Über dieses Buch
Studienarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Statistik, Note: 2, 00, Ludwig-Maximilians-Universität München (Institut für Statistik), Veranstaltung: Fortgeschrittene Themen der Entscheidungstheorie, Sprache: Deutsch, Abstract: Die vorliegende Arbeit wird zunächst die Grundlagen der Entscheidungstheorie skizzieren, zwei bekannte Verfahren - das Minimax-Prinzip und das Bayes-Prinzip - vorstellen und anhand eines praktischen Beispiels aus der Vorlesung die Vorgehensweise veranschaulichen. Der Fokus liegt allerdings auf einem der Likelihood-Funktion zugrunde liegenden Entscheidungsverfahren: Im Hauptteil werden zunächst die der Likelihood zu Grunde liegende Idee und die Annahmen sowie Eigenschaften der Likelihood-Funktion erläutert und danach Entscheidungsverfahren und ihre Umsetzung eingeführt, die auf ihr basieren.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Interessierte, die gerne eine Vielzahl von Themen erkunden. Greife auf die Elementar-Bibliothek mit über 800.000 professionellen Titeln und Bestsellern aus den Bereichen Wirtschaft, Persönlichkeitsentwicklung und Geisteswissenschaften zu. Mit unbegrenzter Lesezeit und Standard-Vorlesefunktion.
- Erweitert: Perfekt für Fortgeschrittene Studenten und Akademiker, die uneingeschränkten Zugriff benötigen. Schalte über 1,4 Mio. Bücher in Hunderten von Fachgebieten frei. Der Erweitert-Plan enthält außerdem fortgeschrittene Funktionen wie Premium Read Aloud und Research Assistant.
Bitte beachte, dass wir keine Geräte unterstützen können, die mit iOS 13 oder Android 7 oder früheren Versionen laufen. Lerne mehr über die Nutzung der App.