
Dimensionsreduktion, Gamma-Konvergenz und Konvergenz numerischer Verfahren für elastische, fadenförmige und undehnbare Körper
- 130 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Dimensionsreduktion, Gamma-Konvergenz und Konvergenz numerischer Verfahren für elastische, fadenförmige und undehnbare Körper
Über dieses Buch
Masterarbeit aus dem Jahr 2017 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1, 0, Albert-Ludwigs-Universität Freiburg (Angewandte Mathematik), Sprache: Deutsch, Abstract: Lange, fadenförmige, elastische Körper oder Stäbe treten in verschiedenen natürlichen Gegebenheiten auf. Sehr bekannte Beispiele stellen das menschliche Haar oder ein DNA-Strang dar. Im Großformat können Bäume oder Gräser ebenfalls mit Stäben verglichen werden; sie widerstreben der Gravitationskraft, ihre Biegesteifigkeit erhält ihre aufrechte Haltung. Auch in vielen technischen Anwendungen treten Stäbe, etwa in Form von Kabeln, Seilen oder textilen Fasern auf.Die genannten Beispiele verdeutlichen die elementare Rolle von Faden- und Balkenmodellen. Die Untersuchung der Bewegung solcher stark deformierbarer Kontinua ist ein altbekanntes Teilgebiet der angewandten Mechanik und wurde bereits von den Mathematikern Jakob I. Bernoulli (1655-1705) und Leonard Euler (1707-1783) untersucht. Unterschiedliche Annahmen an das Kontinuum lassen die Herleitung verschiedener Modelle zu. So liefert uns die Vernachlässigung von Biege- und Torsionssteifigkeit das sogenannte Fadenmodell; unter der zusätzlichen Annahme einer unveränderlichen Länge der Längsachse des Körpers erhalten wir ein undehnbares Modell. Die Unterscheidung der Bezeichnung des Körpers als Balken, Stab oder Faden stammt von den jeweiligen Steifigkeitseigenschaften.In dieser Arbeit wollen wir die partielle Differentialgleichung, welche die Bewegung eines undehnbaren, fadenförmigen Körpers beschreibt, untersuchen, verschiedene iterative Verfahren, welche die Bewegung der Kurve approximieren, analysieren und deren Konvergenzverhalten beschreiben. Besondere Bedeutung wird auf die Betrachtung der Bogenlängenparametrisierung gelegt. Da die numerische Approximation diese nur bedingt erhält, sind wir an dem Grad der Verletzung der Nebenbedingung interessiert.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.
Information
Inhaltsverzeichnis
- Einleitung
- Dynamik geometrisch nichtlinearer Stäbe und Dimensionsreduktion
- Herleitung und Analyse eines semidiskreten Zeitschrittverfahrens
- Elastische Vibrationen undehnbarer Kurven
- -Konvergenz und stationäre Konvergenzaussage
- Anwendung: Zersplitterung von Spaghetti
- Notationen und Kurzschreibweisen
- Hilfsaussagen zu Kapitel 4
- Analytische und numerische Grundlagen
- Matlab-Codes
- Zusammenfassung
- Danksagung
- Literaturverzeichnis