
Support Vector Machines in der Bilderkennung
Entscheidungshilfe durch Algorithmen
- 29 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Über dieses Buch
Studienarbeit aus dem Jahr 2018 im Fachbereich Mathematik - Algebra, Universität Augsburg, Sprache: Deutsch, Abstract: In der vorliegenden Arbeit geht es um Support Vector Machines in der Bilderkennung. Zur Lösung der meisten mathematischen Probleme benötigen wir einen Algorithmus, den wir rechnerisch ausführen können. Diese Abfolge von Operationen wandelt unser Problem als Input in eine Lösung als Output. Was aber, wenn wir einen solchen Algorithmus nicht haben? Zum Beispiel bei der Klassifizierung von E-Mail Spam oder bei der Bilderkennung ist dies oft der Fall. Da im E-Mail-Beispiel die Klassifizierung auch von Person zu Person unterschiedlich ist, wird man nur schwer einen allgemeingültigen Algorithmus für dieses Problem definieren können. Dieses Problem lässt sich allerdings mithilfe einer großen Menge an Daten lösen. Wenn wir nämlich selber klassifizieren, kann der Computer aus unseren Entscheidungen lernen und dadurch neue Objekte selbst einstufen. Eine solche Logik wollen wir nun bei der Erkennung von Haarwurzeln in Bildausschnitten einsetzen. Konkret sollen dazu Support Vector Machines (SVM) genutzt werden, ein Model, das zum überwachten Lernen gezählt wird, man kann also seine Resultate mit den richtigen Ergebnissen vergleichen und damit das Modell validieren. Dazu werden wir zunächst genauer auf dieses Modell eingehen und dann erklären, wie dieses mithilfe von Python auf unser Ausgangsproblem angewandt werden kann.SVMs sind in der Tat in der Lage, ohne Vorgabe einer konkreten Logik gegebene Daten sinnvoll zu klassifizieren. Ein weiterer Vorteil ist, dass im Gegensatz zu anderen Klassifizierungsalgorithmen durch die Transformation zu konvexen Problemen global optimiert wird. Bei höherdimensionalen Anwendungsgebieten wie in unserem Fall der Bilderkennung stößt man allerdings auch das Problem, dass lineare SVMs keine befriedigenden Ergebnisse mehr liefern. Hier auf Kernel SVMs umzusteigen lässt die Komplexität des Problems explodieren und übersteigt die Rechenleistung eines gewöhnlichen Heimcomputers. Für diesen Fall sind vermutlich andere Algorithmen, die gezielt Objekte wiedererkennen, besser geeignet.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.
Information
Inhaltsverzeichnis
- Einführung in das Maschinelle Lernen und die Thematik
- Support Vector Machines
- Erkennung von Haarwurzeln mithilfe von SVMs
- Literaturverzeichnis