
- 47 Seiten
- German
- PDF
- Über iOS und Android verfügbar
Abschätzung der Anzahl der Lösungen eines Polynoms vom Grad n in Fp
Über dieses Buch
Bachelorarbeit aus dem Jahr 2019 im Fachbereich Mathematik - Algebra, Note: 2, 7, Ruhr-Universität Bochum (Mathematik), Sprache: Deutsch, Abstract: Ziel dieser Arbeit ist es Fragen, wie nach der Anzahl der Nullstellen eines Polynoms vom Grad n in einem endlichen Körper oder die der Lösungen einer beliebigen Gleichung (a_1)x+(a_2)x^2+...+(a_n)x^n=b in einem endlichen Körper, zu beantworten. Als erstes werden endliche Körper betrachtet, ihre Definition, sowie ihre Eigenschaften und Konstruktionen. Des Weiteren werden die sogenannten multiplikativen Charakter, Gauß-Summen und Jacobi-Summen eingeführt. Sie liefern Ergebnisse, die bei der Ermittlung der Anzahl der Lösungen von einem beliebigen Polynom vom Grad n und beliebigen Gleichungen eine zentrale Rolle spielen werden. Im letzten Kapitel werden Anwendungen dieser Ergebnisse auf zwei spezifische Gleichungen vorgestellt. Auch werden sie für einen alternativen Beweis des Gesetzes der quadratischen Reziprozität genutzt. So wird aufgezeigt, wo Gauß-, sowie Jacobi-Summen darüber hinaus noch Verwendung finden.
Häufig gestellte Fragen
- Elementar ist ideal für Lernende und Profis, die sich mit einer Vielzahl von Themen beschäftigen möchten. Erhalte Zugang zur Basic-Bibliothek mit über 800.000 vertrauenswürdigen Titeln und Bestsellern in den Bereichen Wirtschaft, persönliche Weiterentwicklung und Geisteswissenschaften. Enthält unbegrenzte Lesezeit und die Standardstimme für die Funktion „Vorlesen“.
- Pro: Perfekt für fortgeschrittene Lernende und Forscher, die einen vollständigen, uneingeschränkten Zugang benötigen. Schalte über 1,4 Millionen Bücher zu Hunderten von Themen frei, darunter akademische und hochspezialisierte Titel. Das Pro-Abo umfasst auch erweiterte Funktionen wie Premium-Vorlesen und den Recherche-Assistenten.
Bitte beachte, dass wir Geräte, auf denen die Betriebssysteme iOS 13 und Android 7 oder noch ältere Versionen ausgeführt werden, nicht unterstützen können. Mehr über die Verwendung der App erfahren.