Game Theory for Applied Economists
eBook - ePub

Game Theory for Applied Economists

Robert Gibbons

Buch teilen
  1. 288 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfĂŒgbar
eBook - ePub

Game Theory for Applied Economists

Robert Gibbons

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

This book introduces one of the most powerful tools of modern economics to a wide audience: those who will later construct or consume game-theoretic models. Robert Gibbons addresses scholars in applied fields within economics who want a serious and thorough discussion of game theory but who may have found other works overly abstract. Gibbons emphasizes the economic applications of the theory at least as much as the pure theory itself; formal arguments about abstract games play a minor role. The applications illustrate the process of model building--of translating an informal description of a multi-person decision situation into a formal game-theoretic problem to be analyzed. Also, the variety of applications shows that similar issues arise in different areas of economics, and that the same game-theoretic tools can be applied in each setting. In order to emphasize the broad potential scope of the theory, conventional applications from industrial organization have been largely replaced by applications from labor, macro, and other applied fields in economics. The book covers four classes of games, and four corresponding notions of equilibrium: static games of complete information and Nash equilibrium, dynamic games of complete information and subgame-perfect Nash equilibrium, static games of incomplete information and Bayesian Nash equilibrium, and dynamic games of incomplete information and perfect Bayesian equilibrium.

HĂ€ufig gestellte Fragen

Wie kann ich mein Abo kĂŒndigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kĂŒndigen“ – ganz einfach. Nachdem du gekĂŒndigt hast, bleibt deine Mitgliedschaft fĂŒr den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich BĂŒcher herunterladen?
Derzeit stehen all unsere auf MobilgerĂ€te reagierenden ePub-BĂŒcher zum Download ĂŒber die App zur VerfĂŒgung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die ĂŒbrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den AboplÀnen?
Mit beiden AboplÀnen erhÀltst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst fĂŒr LehrbĂŒcher, bei dem du fĂŒr weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhĂ€ltst. Mit ĂŒber 1 Million BĂŒchern zu ĂŒber 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
UnterstĂŒtzt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nÀchsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Game Theory for Applied Economists als Online-PDF/ePub verfĂŒgbar?
Ja, du hast Zugang zu Game Theory for Applied Economists von Robert Gibbons im PDF- und/oder ePub-Format sowie zu anderen beliebten BĂŒchern aus Economics & Econometrics. Aus unserem Katalog stehen dir ĂŒber 1 Million BĂŒcher zur VerfĂŒgung.

Information

Jahr
1992
ISBN
9781400835881

Chapter 1

Static Games of Complete Information
In this chapter we consider games of the following simple form: first the players simultaneously choose actions; then the players receive payoffs that depend on the combination of actions just chosen. Within the class of such static (or simultaneous-move) games, we restrict attention to games of complete information. That is, each player’s payoff function (the function that determines the player’s payoff from the combination of actions chosen by the players) is common knowledge among all the players. We consider dynamic (or sequential-move) games in Chapters 2 and 4, and games of incomplete information (games in which some player is uncertain about another player’s payoff function—as in an auction where each bidder’s willingness to pay for the good being sold is unknown to the other bidders) in Chapters 3 and 4.
In Section 1.1 we take a first pass at the two basic issues in game theory: how to describe a game and how to solve the resulting game-theoretic problem. We develop the tools we will use in analyzing static games of complete information, and also the foundations of the theory we will use to analyze richer games in later chapters. We define the normal-form representation of a game and the notion of a strictly dominated strategy. We show that some games can be solved by applying the idea that rational players do not play strictly dominated strategies, but also that in other games this approach produces a very imprecise prediction about the play of the game (sometimes as imprecise as “anything could happen"). We then motivate and define Nash equilibrium—a solution concept that produces much tighter predictions in a very broad class of games.
In Section 1.2 we analyze four applications, using the tools developed in the previous section: Cournot’s (1838) model of imperfect competition, Bertrand’s (1883) model of imperfect competition, Farber’s (1980) model of final-offer arbitration, and the problem of the commons (discussed by Hume [1739] and others). In each application we first translate an informal statement of the problem into a normal-form representation of the game and then solve for the game’s Nash equilibrium. (Each of these applications has a unique Nash equilibrium, but we discuss examples in which this is not true.)
In Section 1.3 we return to theory. We first define the notion of a mixed strategy, which we will interpret in terms of one player’s uncertainty about what another player will do. We then state and discuss Nash’s (1950) Theorem, which guarantees that a Nash equilibrium (possibly involving mixed strategies) exists in a broad class of games. Since we present first basic theory in Section 1.1, then applications in Section 1.2, and finally more theory in Section 1.3, it should be apparent that mastering the additional theory in Section 1.3 is not a prerequisite for understanding the applications in Section 1.2. On the other hand, the ideas of a mixed strategy and the existence of equilibrium do appear (occasionally) in later chapters.
This and each subsequent chapter concludes with problems, suggestions for further reading, and references.
1.1 Basic Theory: Normal-Form Games and Nash Equilibrium
1.1.A Normal-Form Representation of Games
In the normal-form representation of a game, each player simultaneously chooses a strategy, and the combination of strategies chosen by the players determines a payoff for each player. We illustrate the normal-form representation with a classic example —The Prisoners’ Dilemma. Two suspects are arrested and charged with a crime. The police lack sufficient evidence to convict the suspects, unless at least one confesses. The police hold the suspects in separate cells and explain the consequences that will follow from the actions they could take. If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail. If both confess then both will be sentenced to jail for six months. Finally, if one confesses but the other does not, then the confessor will be released immediately but the other will be sentenced to nine months in jail—six for the crime and a further three for obstructing justice.
The prisoners’ problem can be represented in the accompanying bi-matrix. (Like a matrix, a bi-matrix can have an arbitrary number or rows and columns; “bi" refers to the fact that, in a two-player game, there are two numbers in each cell—the payoffs to the two players.)
Images
In this game, each player has two strategies available: confess (or fink) and not confess (or be mum). The payoffs to the two players when a particular pair of strategies is chosen are given in the appropriate cell of the bi-matrix. By convention, the payoff to the so-called row player (here, Prisoner 1) is the first payoff given, followed by the payoff to the column player (here, Prisoner 2). Thus, if Prisoner 1 chooses Mum and Prisoner 2 chooses Fink, for example, then Prisoner 1 receives the payoff −9 (representing nine months in jail) and Prisoner 2 receives the payoff 0 (representing immediate release).
We now turn to the general case. The normal-form representation of a game specifies: (1) the players in the game, (2) the strategies available to each player, and (3) the payoff received by each player for each combination of strategies that could be chosen by the players. We will often discuss an n-player game in which the players are numbered from 1 to n and an arbitrary player is called player i. Let Si denote the set of strategies available to player i (called I’s strategy space), and let si denote an arbitrary member of this set. (We will occasionally write si Δ Si to indicate that the strategy si is a member of the set of strategies Si.) Let (s1, 
, sn) denote a combination of strategies, one for each player, and let ui denote player i’S payoff function: ui(s1, 
, sn) is the payoff to player i if...

Inhaltsverzeichnis