Mastering Distributed Tracing
eBook - ePub

Mastering Distributed Tracing

Analyzing performance in microservices and complex systems

Yuri Shkuro

  1. 444 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Mastering Distributed Tracing

Analyzing performance in microservices and complex systems

Yuri Shkuro

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Understand how to apply distributed tracing to microservices-based architectures

Key Features

  • A thorough conceptual introduction to distributed tracing
  • An exploration of the most important open standards in the space
  • A how-to guide for code instrumentation and operating a tracing infrastructure

Book Description

Mastering Distributed Tracing will equip you to operate and enhance your own tracing infrastructure. Through practical exercises and code examples, you will learn how end-to-end tracing can be used as a powerful application performance management and comprehension tool.

The rise of Internet-scale companies, like Google and Amazon, ushered in a new era of distributed systems operating on thousands of nodes across multiple data centers. Microservices increased that complexity, often exponentially. It is harder to debug these systems, track down failures, detect bottlenecks, or even simply understand what is going on. Distributed tracing focuses on solving these problems for complex distributed systems. Today, tracing standards have developed and we have much faster systems, making instrumentation less intrusive and data more valuable.

Yuri Shkuro, the creator of Jaeger, a popular open-source distributed tracing system, delivers end-to-end coverage of the field in Mastering Distributed Tracing. Review the history and theoretical foundations of tracing; solve the data gathering problem through code instrumentation, with open standards like OpenTracing, W3C Trace Context, and OpenCensus; and discuss the benefits and applications of a distributed tracing infrastructure for understanding, and profiling, complex systems.

What you will learn

  • How to get started with using a distributed tracing system
  • How to get the most value out of end-to-end tracing
  • Learn about open standards in the space
  • Learn about code instrumentation and operating a tracing infrastructure
  • Learn where distributed tracing fits into microservices as a core function

Who this book is for

Any developer interested in testing large systems will find this book very revealing and in places, surprising. Every microservice architect and developer should have an insight into distributed tracing, and the book will help them on their way. System administrators with some development skills will also benefit. No particular programming language skills are required, although an ability to read Java, while non-essential, will help with the core chapters.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Mastering Distributed Tracing als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Mastering Distributed Tracing von Yuri Shkuro im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Computer Science & Computer Science General. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2019
ISBN
9781788627597

Mastering Distributed Tracing


Table of Contents

Mastering Distributed Tracing
Why subscribe?
Packt.com
Contributors
About the author
About the reviewer
About the illustrator
Packt is searching for authors like you
Preface
Who this book is for
What this book covers
To get the most out of this book
Download the example code files
Download the color images
Conventions used
Get in touch
Reviews
I. Introduction
1. Why Distributed Tracing?
Microservices and cloud-native applications
What is observability?
The observability challenge of microservices
Traditional monitoring tools
Metrics
Logs
Distributed tracing
My experience with tracing
Why this book?
Summary
References
2. Take Tracing for a HotROD Ride
Prerequisites
Running from prepackaged binaries
Running from Docker images
Running from the source code
Go language development environment
Jaeger source code
Start Jaeger
Meet the HotROD
The architecture
The data flow
Contextualized logs
Span tags versus logs
Identifying sources of latency
Resource usage attribution
Summary
References
3. Distributed Tracing Fundamentals
The idea
Request correlation
Black-box inference
Schema-based
Metadata propagation
Anatomy of distributed tracing
Sampling
Preserving causality
Inter-request causality
Trace models
Event model
Span model
Clock skew adjustment
Trace analysis
Summary
References
II. Data Gathering Problem
4. Instrumentation Basics with OpenTracing
Prerequisites
Project source code
Go development environment
Java development environment
Python development environment
MySQL database
Query tools (curl or wget)
Tracing backend (Jaeger)
OpenTracing
Exercise 1 – the Hello application
Hello application in Go
Hello application in Java
Hello application in Python
Exercise summary
Exercise 2 – the first trace
Step 1 – create a tracer instance
Create a tracer in Go
Create a tracer in Java
Create a tracer in Python
Step 2 – start a span
Start a span in Go
Start a span in Java
Start a span in Python
Step 3 – annotate the span
Annotate the span in Go
Annotate the span in Java
Annotate the span in Python
Exercise summary
Exercise 3 – tracing functions and passing context
Step 1 – trace individual functions
Trace individual functions in Go
Trace individual functions in Java
Trace individual functions in Python
Step 2 – combine multiple spans into a single trace
Combine multiple spans into a single trace in Go
Combine multiple spans into a single trace in Java
Combine multiple spans into a single trace in Python
Step 3 – propagate the in-process context
In-process context propagation in Python
In-process context propagation in Java
In-process context propagation in Go
Exercise summary
Exercise 4 – tracing RPC requests
Step 1 – break up the monolith
Microservices in Go
Microservices in Java
Microservices in Python
Step 2 – pass the context between processes
Passing context between processes in Go
Passing context between processes in Java
Passing context between processes in Python
Step 3 – apply OpenTracing-recommended tags
Standard tags in Go
Standard tags in Java
Standard tags in Python
Exercise summary
Exercise 5 – using baggage
Using baggage in Go
Using baggage in Java
Using baggage in Python
Exercise summary
Exercise 6 – auto-instrumentation
Open source instrumentation in Go
Auto-instrumentation in Java
Auto-instrumentation in Python
Exercise 7 – extra credit
Summary
References
5. Instrumentation of Asynchronous Applications
Prerequisites
Project source code
Java development environment
Kafka, Zookeeper, Redis, and Jaeger
The Tracing Talk chat application
Implementation
The lib module
AppId
Message
KafkaConfig and KafkaService
RedisConfig and RedisService
GiphyService
The chat-api service
The storage-service microservice
The giphy-service microservice
Running the application
Observing traces
Instrumenting with OpenTracing
Spring instrumentation
Tracer resolver
Redis instrumentation
Kafka instrumentation
Producing messages
Consuming messages
Instrumenting asynchronous code
Summary
References
6. Tracing Standards and Ecosystem
Styles of instrumentation
Anatomy of tracing deployment and interoperability
Five shades of tracing
Know your audience
The ecosystem
Tracing systems
Zipkin and OpenZipkin
Jaeger
SkyWalking
X-Ray, Stackdriver, and more
Standards projects
W3C Trace Context
W3C "Data Interchange Format"
OpenCensus
OpenTracing
Summary
References
7. Tracing with Service Meshes
Service meshes
Observability via a service mesh
Prerequisites
Project source code
Java development environment
Kubernetes
Istio
The Hello application
Distributed tracing with Istio
Using Istio to generate a service graph
Distributed context and routing
Summary
References
8. All About Sampling
Head-based consistent sampling
Probabilistic sampling
Rate limiting sampling
Guaranteed-throughput probabilistic sampling
Adaptive sampling
Local adaptive sampling
Global adaptive sampling
Goals
Theory
Architecture
Calculating sampling probability
Implications of adaptive sampling
Extensions
Context-sensitive sampling
Ad-hoc or debug sampling
How to deal with oversampling
Post-collection down-sampling
Throttling
Tail-based consistent sampling
Partial sampling
Summary
References
III. Getting Value from Tracing
9. Turning the Lights On
Tracing as a knowledge base
Service graphs
Deep, path-aware service graphs
Detecting architectural problems
Performance analysis
Critical path analysis
Recognizing trace patterns
Look for error markers
Look for the longest span on the critical path
Look out for missing details
Avoid sequential execution or "staircase"
Be wary when things finish at exactly the same time
Exemplars
Latency histograms
Long-term profiling
Summary
References
10. Distributed Context Propagation
Brown Tracing Plane
Pivot tracing
Chaos engineering
Traffic labeling
Testing in production
Debugging in production
Developing in production
Summary
References
11. Integration with Metrics and Logs
Three pillars of observability
Prerequisites
Project source code
Java development environment
Running the servers in Docker
Declaring index pattern in Kibana
Running the clients
The Hello application
Integration with metrics
Standard metrics via tracing instrumentation
Adding context to metrics
Context-aware metrics APIs
Integration with logs
Structured logging
Correlating logs with trace context
Context-aware logging APIs
Capturing logs in the tracing system
Do we need separate logging and tracing backends?
Summary
References
12. Gathering Insights with Data Mining
Feature extraction
Components of a data mining pipeline
Tracing backend
Trace completion trigger
Feature extractor
Aggregator
Feature extraction exercise
Prerequisites
Project source code
Running the servers in Docker
Defining index mapping in Elasticsearch
Java development environment
Microservices simulator
Running as a Docker image
Running from source
Verify
Define an index pattern in Kibana
The Span Count job
Trace completion trigger
Feature extractor
...

Inhaltsverzeichnis

  1. Mastering Distributed Tracing