Water Resources
eBook - ePub

Water Resources

A New Water Architecture

Alexander Lane, Michael Norton, Sandra Ryan

Buch teilen
  1. English
  2. ePUB (handyfreundlich)
  3. Über iOS und Android verfügbar
eBook - ePub

Water Resources

A New Water Architecture

Alexander Lane, Michael Norton, Sandra Ryan

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Over 7 billion people demand water from resources that the changing climate is making more and more difficult to harness. Water scarcity and shortage are increasingly common and conditions are becoming more extreme. Inadequate and inappropriate management of water is already taking its toll on the environment and on the quality of life of millions of people. Modern water professionals have a duty to develop sound water science and robust evidence to lobby and influence national and regional development policy and investment priorities. We need to be bold and brave to challenge the status quo, argue the case for change, and create a New Water Architecture.

Water Resources: A New Water Architecture takes a unique approach to the challenges of water management. The stress caused by our desire to live, eat, and consume is examined in the context of Governance, the role of policy, and the commercial world. The authors share their nine-step vision for a New Water Architecture.

Written by three industry practitioners, this book provides students, young professionals, policymakers, and those interested in the sustainability of our natural resources with a pragmatic and compelling perspective on how to manage the ultimate resource of our time.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Water Resources als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Water Resources von Alexander Lane, Michael Norton, Sandra Ryan im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Ciencias físicas & Hidrología. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2017
ISBN
9781118794074

Part I
Setting the Scene

Chapter 1
Water Resources in the Twenty-First Century

In Earth's 45th millionth century a global crisis of freshwater scarcity is looming, a crisis that is accelerating thanks to our unbridled development and our burgeoning demand for food and energy, and as a result of the effects of climate change. Just 0.1% of the total global water volume of 1.4 billion km3 is accessible freshwater; we are already withdrawing one-quarter of our accessible renewable water resource (RWR) however, much of which is already needed to sustain our ecosystems and biodiversity, themselves vital for our survival.
In this book, we argue that the world faces water security challenges of a scale previously unseen and largely unsuspected by its population. Estimates suggest that we need four times the current global rate of investment in new water supplies if we are to successfully meet projected water demand in 2030 (2030 WRG 2009). To have any chance of meeting future water demands, we believe there is a compelling need for water professionals to emerge from their comfort zones and to engage with politicians, decision makers and those stakeholders with influencing power. While we can and should continue to develop cost-efficient water technologies, water professionals must grasp this moment to put themselves at the centre of the often-siloed disciplines of science, technology, politics, environment and economics. New models of integrated water management are required to address complex multi-stakeholder demand patterns and water-related responsibilities.

1.1 A Looming Crisis

On 31 October 2011, a baby girl born in Manila was chosen to symbolise the 7 billionth human being on the planet. Although the rate at which the global population is growing has almost halved since the 1970s, in the last 40 years the world's population has still doubled. Alongside this increase, strong economic growth has seen standards of living rise dramatically in the developed world. Forecasts of population growth suggest that by 2050 there may be 9.5 billion humans sharing the planet, most of them living in our ever-expanding cities. We have already reached a point where more than half of all people live in urban areas, and this proportion is expected to rise to two-thirds later this century. The influence of these demographic trends on water resources in discussed further in Section 2.3.3 and in detail in Chapter 4 ‘Live’.
Significant volumes of research have been carried out and continue to be conducted into potential scenarios of climate change and their projected impacts on RWR and water demand. The evidence is strong that the influences are real and that the impacts are already with us and set to intensify (Intergovernmental Panel on Climate Change (IPCC) 2013). Very broadly, predictions are for increased rainfall and runoff in higher latitudes and reduced rainfall and runoff in tropical and mid-to lower latitudes. The volumes of water stored in glaciers are expected to fall, thereby reducing annual meltwater flows and in turn affecting water supplies in dependent areas such as Peru and California. Higher temperatures will exacerbate water pollution problems in many rivers and lakes, and will increase evaporation from open waterbodies and soil. More intense rainfall events will result in more frequent stormwater flooding in urban areas as well as from rivers.

1.2 Human Interactions with Water in the Biosphere

It is estimated that the world's total RWR is between 33,500 km3 and 47,000 km3 per year (Millennium Ecosystem Assessment 2005). Vast amounts of this resource are, for all practical purposes, unavailable due to their remoteness relative to demand (for example in the Amazon Basin, Canada, Greenland and Russia). It has been estimated that only around 50% of the global RWR can be accessed (Millennium Ecosystem Assessment 2005).
Currently, we withdraw around 4,500 km3 of our accessible RWR (2030 WRG 2009). In the last 40 years, global water withdrawals have almost tripled and this growth rate remains strong, increasing by over 60 km3 each year. Despite these increases in withdrawals, demands for water are growing even faster and are expected to reach 6,000 km3 a year by 2030 (2030 WRG 2009). Even with our increasing water supply rates, and allowing for more efficient use of water, meeting this demand is believed by many authors to be unlikely (2030 WRG 2009). It can be argued that even now we are reaching what some observers are calling ‘peak water’, the concept of the safe water withdrawal limit that must not be passed if we are also to leave enough water in our rivers to maintain their aquatic ecosystems and biodiversity, a vital and much underappreciated resource in their own right.
Now that more than 1 in 2 people live in urban environments, the need to address the pressures that urban lifestyles exert on water resources is paramount. Urban water managers already face challenges of aging water infrastructure, large energy demands, high maintenance and treatment costs, and increasingly stringent environmental regulations. Many are also facing population growth, and the impacts of climate change on water demand and on urban stormwater runoff.
Water management in cities and urban settings has experienced many developments in thinking in recent years. The International Eco-Cities Initiative identified as many as 178 significant so-called ‘eco-city’ initiatives at different stages of planning and implementation around the world (Joss et al. 2011), and most of these initiatives include a water management component. Examples include Curitiba (Brazil), Auroville (India), Dongtan (China), Masdar (UAE), Freiburg (Germany) and Stockholm (Sweden). The evolving aim is to move from urban systems which are heavy users of non-renewable resources and generators of waste to urban systems which reduce their water demand, use renewable resources and recycle their wastes into valuable products (see Figure 1.1).
Illustration of Inputs and outputs in an idealized urban resource system.
Figure 1.1 Inputs and outputs in an idealised urban resource system. Source: adapted from Rogers (1998).
Importantly, this aim applies as much to the resources of food, energy and other materials as it does to water; water is at the heart of urban sustainability, however. Already, most urban water utility managers are implementing measures which can be loosely classed as ‘demand management’: promoting...

Inhaltsverzeichnis