Discovering Superconductivity
eBook - ePub

Discovering Superconductivity

An Investigative Approach

Gren Ireson, Gren Ireson

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Discovering Superconductivity

An Investigative Approach

Gren Ireson, Gren Ireson

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Superconductivity is a quantum phenomenon that manifests itself in materials showing zero electrical resistance below a characteristic temperature resulting in the potential for an electric current to run continually through such a material without the need for a power source. Such materials are used extensively in medical and power applications, e.g. MRI and NMR machines.

Discovering Superconductivity uses a series of practical and investigative activities, which can be used as tutor demonstrations or as student lab exercises.

This highly illustrated text features the following sections:

  • Introduction - including a brief history of superconductivity
  • Superconductivity - an explanation of the phenomenon and its effects
  • Superconducting materials – including High & Low temperature superconductors
  • Applications – how superconductivity is used in medical imaging, at CERN and in the Maglev trains

This text will serve as an excellent introduction for students, with or without a physics background, to superconductivity. With a strong practical, experimental emphasis, it provides readers with an overview of the topic preparing them for more advanced texts used in advanced undergraduate and post-graduate courses.

PowerPoint files of the figures presented within this text are available at: booksupport.wiley.com

A word from the author: "The intention of this text is to introduce the reader to the study of superconductivity via a minds-on approach.... The minds-on approach takes this a stage further by requiring the learner to engage with the process to a greater extent."

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Discovering Superconductivity un PDF/ePUB en línea?
Sí, puedes acceder a Discovering Superconductivity de Gren Ireson, Gren Ireson en formato PDF o ePUB, así como a otros libros populares de Technology & Engineering y Electrical Engineering & Telecommunications. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Wiley
Año
2012
ISBN
9781118343210
Section II
Superconductivity
This section explores the notion of superconductivity and starts with an overview of the current explanation.
The Meissner–Ochsenfeld effect is developed as the defining condition for superconductivity leading to the concept of perfect diamagnetism and the persistence of an induced current.
This leads onto the differentiation of type I and type II superconductors and the penetration of magnetic flux leading to a non-perfect diamagnetic effect.
Finally, this section looks at the notion of flux pinning where the penetration of flux is locked into a fluxoid surrounded by a supercurrent vortex.
3
An Explanation of Superconductivity?
The chapter heading carries the question mark for good reason, especially if we consider a qualitative explanation. However, in the spirit of good pedagogy, we will start with an attempt to convey the key ideas with words prior to moving into something more mathematical, or more abstract.
The key point is to accept that electrons, in a conductor, behave very differently at low temperatures when compared to their behaviour at everyday temperatures. For a superconductor, this behaviour is taken to an extreme at the transition temperature, Tc. The transition temperature may vary from, for example 4.2 K for mercury to 291 K for (Tl5Pb2)Ba2MgCu10O17. You may also see that low temperature is also a relative term when dealing with superconductors. A general rule of thumb appears to be that transition temperatures below 30 K are low-temperature superconductors.
However, the electrons in a conductor, following thermodynamic theory, naturally prefer the lowest possible energy state. In a metal conductor, for example above Tc, the electrons prefer an individual state, but below Tc, this preferred state becomes electron pairs. These pairs are a key part of the BCS theory that will be discussed below. Now, it is not the time to concern ourselves with naturally repulsive electrons forming attractive pairs!
3.1 TRANSITION TEMPERATURE
The temperature at which a material becomes superconducting is the transition temperature, Tc, and this can be relatively easily measured in the laboratory, remember Onnes did just this in 1911.
The normal approach to measuring resistance in the laboratory is to take a series of readings of the potential difference across the sample, V, and the current through the sample, I, and then assume that R = V/I
Ohm's law can still be applied to the superconductor but some care is needed in the manner of measuring.
Consider the two situations given in Figure 3.1.
Figure 3.1 Measuring V and I for a superconductor.
ch10fig001.eps
Figure 3.2 A four-point probe with a thermocouple.
ch10fig002.eps
In the left-hand situation, the current flows through the connecting leads to the voltmeter, and hence the resistance of the leads will be measured along with that of the superconductor. However, in the right-hand situation, no current flows in the connecting leads to the voltmeter; if the resistance of the superconductor falls to zero, then the current flows with no potential difference. This approach is often referred to as a four-point probe.
In order to measure the transition temperature, the temperature and resistance must be recorded above and below the transition temperature. This can be achieved using a four-point probe along with a thermocouple, as shown in Figure 3.2.
The yellow leads connect to a voltmeter, the black leads to a steady current source and the central lead is a thermocouple.
In order that the transition temperature can be measured, a simple approach is to immerse the apparatus in an insulated container; a thermos-style drinks ...

Índice