Aircraft Structures
eBook - ePub

Aircraft Structures

David J. Peery

Compartir libro
  1. 576 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Aircraft Structures

David J. Peery

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Still relevant decades after its 1950 publication, this legendary reference text on aircraft stress analysis is considered the best book on the subject. It emphasizes basic structural theory, which remains unchanged with the development of new materials and construction methods, and the application of the elementary principles of mechanics to the analysis of aircraft structures.
Suitable for undergraduate students, this volume covers equilibrium of forces, space structures, inertia forces and load factors, shear and bending stresses, and beams with unsymmetrical cross sections. Additional topics include spanwise air-load distribution, external loads on the airplane, joints and fittings, deflections of structures, and special methods of analysis. Topics involving a knowledge of aerodynamics appear in final chapters, allowing students to study the prerequisite aerodynamics topics in concurrent courses.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Aircraft Structures un PDF/ePUB en línea?
Sí, puedes acceder a Aircraft Structures de David J. Peery en formato PDF o ePUB, así como a otros libros populares de Naturwissenschaften y Aerodynamik. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2013
ISBN
9780486267302
Categoría
Aerodynamik

CHAPTER 1

EQUILIBRIUM OF FORCES

1.1. Equations of Equilibrium. One of the first steps in the design of a machine or structure is the determination of the loads acting on each member. The loads acting on an airplane may occur in various landing or flight conditions. The loads may be produced by ground reactions on the wheels, by aerodynamic forces on the wings and other surfaces, or by forces exerted on the propeller. The loads are resisted by the weight or inertia of the various parts of the airplane. Several loading conditions must be considered, and each member must be designed for the combination of conditions which produces the highest stress in the member. For practically all members of the airplane structure the maximum loads occur when the airplane is in an accelerated flight or landing condition and the external loads are not in equilibrium. If, however, the inertia loads are also considered, they will form a system of forces which are in equilibrium with the external loads. In the design of any member it is necessary to find all the forces acting on the member, including inertia forces. Where these forces are in the same plane, as is often the case, the following equations of static equilibrium apply to any isolated portion of the structure:
image
The terms ΣFx and ΣFy represent the summations of the components of forces along x and y axes, which may be taken in any two arbitrary directions. The term ΣM represents the sum of the moments of all forces about any arbitrarily chosen point in the plane. Each of these equations may be set up in an infinite number of ways for any problem, since the directions of the axes and the center of moments may be chosen arbitrarily. Only three independent equations exist for any free body, however, and only three unknown forces may be found from the equations. If, for example, an attempt is made to find four unknown forces by using the two force equations and moment equations about two points, the four equations cannot be solved because they are not independent, i.e., one of the equations can be derived from the other three. The following equations cannot be solved for the numerical values of the three unknowns because they are not independent.
image
The third equation may be obtained by adding the first two equations, and consequently does not represent an independent condition.
In the analysis of a structure containing several members it is necessary to draw a free-body diagram for each member, showing all the forces acting on that member. It is not possible to show these forces on a composite sketch of the entire structure, since equal and opposite forces act at all joints and an attempt to designate the correct direction of the force on each member will be confusing. In applying the equations of statics it is desirable to choose the axes and centers of moments so that only one unknown appears in each equation.
Many structural joints are made with a single bolt or pin. Such joints are assumed to have no resistance to rotation. The force at such a joint must pass through the center of the pin, as shown in Fig. 1.1, since the moment about the center of the pin must be zero. The force at the pin joint has two unknown quantities, the magnitude F and the direction
image
. It is usually more convenient to find the two unknown components, Fx and Fy, from which F and
image
can be found by the equations:
image
image
The statics problem is considered as solved when the components Fx and Fy at each joint are obtained.
image
FIG. 1.1.
image
FIG. 1.2.
1.2. Two-force Members. When a structural member has forces acting at only two points, these forces must be equal and opposite, as shown in Fig. 1.2. Since moments about point A must be zero, the force FB must pass through point A. Similarly the force FA must pass through point B for moments about point B to be zero. From a summation of forces, the forces FB and FA must have equal magnitudes but opposite directions. Two-force members are frequently used in aircraft and other structures, since simple tension or compression members are usually the lightest members for transmitting forces. Where possible, two-force members are straight, rather than curved as shown in Fig. 1.2. Structures made up entirely of two-force members are called trusses and are frequently used in fuselages, engine mounts, and other aircraft structures, as well as in bridge and building structure...

Índice