Galois Theory
eBook - ePub

Galois Theory

Lectures Delivered at the University of Notre Dame by Emil Artin (Notre Dame Mathematical Lectures,

Emil Artin, Arthur N. Milgram, Arthur N. Milgram

Compartir libro
  1. 86 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Galois Theory

Lectures Delivered at the University of Notre Dame by Emil Artin (Notre Dame Mathematical Lectures,

Emil Artin, Arthur N. Milgram, Arthur N. Milgram

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

In the nineteenth century, French mathematician Evariste Galois developed the Galois theory of groups-one of the most penetrating concepts in modem mathematics. The elements of the theory are clearly presented in this second, revised edition of a volume of lectures delivered by noted mathematician Emil Artin. The book has been edited by Dr. Arthur N. Milgram, who has also supplemented the work with a Section on Applications.
The first section deals with linear algebra, including fields, vector spaces, homogeneous linear equations, determinants, and other topics. A second section considers extension fields, polynomials, algebraic elements, splitting fields, group characters, normal extensions, roots of unity, Noether equations, Jummer's fields, and more.
Dr. Milgram's section on applications discusses solvable groups, permutation groups, solution of equations by radicals, and other concepts.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Galois Theory un PDF/ePUB en línea?
Sí, puedes acceder a Galois Theory de Emil Artin, Arthur N. Milgram, Arthur N. Milgram en formato PDF o ePUB, así como a otros libros populares de Mathematik y Gruppentheorie. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2012
ISBN
9780486158259
Categoría
Mathematik
Categoría
Gruppentheorie

II FIELD THEORY

A. Extension Fields.

If E is a field and F a subset of E which, under the operations of addition and multiplication in E, itself forms a field, that is, if F is a subfield of E, then we shall call E an extension of F. The relation of being an extension of F will be briefly designated by F ⊂ E. If α, β, γ, ... are elements of E, then by F(α, β, γ, ...) we shall mean the set of elements in E which can be expressed as quotients of polynomials in α, β, γ,... with coefficients in F. It is clear that
F(α, β, γ,...) is a field and is the smallest extension of F which contains the elements α, β, γ, ... . We shall call F(α, β, γ,...) the field obtained after the adjunction of the elements α, β, γ,... to F, or the field generated out of F by the elements α, β, γ,... In the sequel all fields will be assumed commutative.
If F ⊂ E, then ignoring the operation of multiplication defined between the elements of E, we may consider E as a vector space over F. By the degree of E over F, written (E/F), we shall mean the dimension of the vector space E over F. If (E/F) is finite, E will be called a finite extension.
THEOREM 6. If F, B, E are three fields such that F ⊂ B ⊂ E, then
(E/F) (B/F)(E/B).
Let A1 , A2, ..., Ar be elements of E which are linearly independent with respect to B and let C1, C2,..., Cs be elements of B which are independent with respect to F. Then the products Ci Aj where i = 1, 2, ... , s and j = 1, 2, ... , r are elements of E which are independent with respect to F. For if
e9780486158259_i0058.webp
, then
e9780486158259_i0059.webp
is a linear combination of the Aj with coefficients in B and because the A, were independent with respect to B we have
e9780486158259_i0060.webp
for each j. The independence of the C, with respect to F then requires that each aij = 0. Since there are r • s elements CiAj we have shown that for each r ≤ ( E/B ) and s ≤ ( B/F ) the degree ( E/F ) ≥ r
e9780486158259_img_8729.gif
s. Therefore, ( E/F ) ≥ (B/F) (E/B). If one of the latter numbers is infinite, the theorem follows. If both ( E/B ) and ( B/F ) are finite, say r and s respectively, we may suppose that the Aj and the Ci are generating systems of E and B respectively, and we show that the set of products Ci Aj is a generating system of E over F. Each A
e9780486158259_img_8714.gif
E can be expressed linearly in terms of the Aj with coefficients in B. Thus, A =
e9780486158259_img_8721.gif
Bj Aj. Moreover, each Bj being an element of B can be expressed linearly with coefficients in F in terms of the Ci, i.e., Bj =
e9780486158259_img_8721.gif
aij Ci, j = 1, 2, ... , r. Thus, A =
e9780486158259_img_8721.gif
aij CiAj and the CiAj form an independent generating system of E over F.
e9780486158259_i0061.webp

B. Polynomials.

An expression of the form aoxn + a1xn–1+ ... + an is called a polynomial in F of degree n if the coefficients ao, ... , an are elements of the field F and ao ≠0. Multiplication and addition of polynomials are performed in the usual way3.
A polynomial in F is called reducible in F if it is equal to the product of two polynomials in F each of degree at least one. Polynomials which are not reducible in F are called irreducible in F.
If f(x) = g (x)
e9780486158259_img_8729.gif
h(x) is a relation which holds between the polynomials f (x), g (x), h (x) in a field F, then we shall say that g (x) divides f(x) in F, or that g (x) is a factor of f (x). It is readily seen ...

Índice