Tuning Semiconducting and Metallic Quantum Dots
eBook - ePub

Tuning Semiconducting and Metallic Quantum Dots

Spectroscopy and Dynamics

Christian von Borczyskowski, Eduard Zenkevich, Christian von Borczyskowski, Eduard Zenkevich

Compartir libro
  1. 406 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Tuning Semiconducting and Metallic Quantum Dots

Spectroscopy and Dynamics

Christian von Borczyskowski, Eduard Zenkevich, Christian von Borczyskowski, Eduard Zenkevich

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Nanotechnology is one of the growing areas of this century, also opening new horizons for tuning optical properties. This book introduces basic tuning schemes, including those on a single quantum object level, with an emphasis on surface and interface manipulation of semiconducting and metallic quantum dots. There are two opposing demands in current forefront applications of quantum dots as optical labels, namely high luminescence stability (suppression of luminescence intermittency) and controllable intermittency and bleaching on a single-particle level to facilitate super-resolution optical microscopy (for which Eric Betzig, Stefan W. Hell, and William E. Moerner were awarded the 2014 Nobel Prize in Chemistry). The book discusses these contradictory demands with respect to both an understanding of the basic processes and applications. The chapters are a combination of scholarly presentation and comprehensive review and include case studies from the authors' research, including unpublished results. Special emphasis is on a detailed understanding of spectroscopic and dynamic properties of semiconducting quantum dots. The book is suitable for senior undergraduates and researchers in the fields of optical nanoscience, materials science, and nanotechnology.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Tuning Semiconducting and Metallic Quantum Dots un PDF/ePUB en línea?
Sí, puedes acceder a Tuning Semiconducting and Metallic Quantum Dots de Christian von Borczyskowski, Eduard Zenkevich, Christian von Borczyskowski, Eduard Zenkevich en formato PDF o ePUB, así como a otros libros populares de Ciencias físicas y Química física y teórica. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2017
ISBN
9781315340968

Chapter 1

Size Matters: Optical Properties of Nanoparticles

Christian von Borczyskowskia and Eduard Zenkevichb

a Institute of Physics, Center for Nanostructured Materials and Analytics, Technische Universität Chemnitz, Reichenhainer Str. 70, D-09107 Chemnitz, Germany
b Department of Information Technologies and Robototechnique, National Technical University of Belarus, Prospect Nezavisimosti 65, 220013 Minsk, Belarus

1.1 Introduction

One of the fascinations about nanoparticles or nanocrystals (NCs) built from a few to several thousand atoms is the fact that they are from a quantum mechanical point of view a class of materials between atoms and solids showing properties of both of them. Though a deep understanding of their properties emerged only during the last few decades, the related versatility has been used already since centuries. Probably the most obvious feature is the dependence of properties, like the color, on the size of NCs, both for semiconducting and for metal particles. A lot of features can nowadays be understood in terms of quantum confinement resembling in its most simple approximation, the “particle in a box” model taught in undergraduate courses on quantum mechanics. NCs falling into this category are thought of as 1D quantum objects and have been also named “quantum dots” (QDs). We will use this name, or QDs, throughout the book. The fundamental optical excitations in a semiconducting QD depend on electrons, holes, and excitons in a 3D (confining) potential. Systematic research began in the early 1980s with the identification of quantum confinement in small semiconductor NCs. Different from scaling down nanostructures lithographically as is the present standard in micro-and nanotechnology, QDs are in most cases formed via bottom-up approaches in glasses or polymers or from solutions. In general, semiconductor nanostructures show an amazing variety of interesting properties different from conventional solid state materials. A recent comprehensive review outlines the prospects of nanoscience with NCs [Kovalenko et al., 2015].
Though quantum confinement and its consequences already open an enormously wide field with respect to both fundamental research and applications, QDs are not only in between atoms and solids but depend to a large extent on surface properties. This can be considered not as a disadvantage but just the opposite since elementary processes such as charge accumulation or catalysis depend essentially on interface properties. In this book, we will pay special attention from an empirical point of view to surface or interface features. Especially we will discuss how they can be tuned by various means.
Figure 1.1 shows schematically what has to be taken into account when analyzing a QD, including influences outside the intrinsically confining potential. We have indicated that a crystal structure may not be perfect under realistic conditions. In any case a crystal structure includes facets and surface domains, depending on crystal symmetry. Besides the QD core (e.g., CdSe as a II–VI semiconductor), QDs may contain shells from other semiconductor materials (e.g., ZnS) and/or organic surfactants (ligands). The latter are essential when QDs are synthesized from solution to stop further growth or to protect from aggregation (Oswald ripening). Such a structure already constitutes two to three interfaces. In general, QDs are embedded in a matrix (liquid, polymer, glass). Moreover, in the case of thin films, a supporting substrate might also have to be taken into account. All these subsystems have to be followed since though the electronic wavefunctions are confined in a potential, they might tunnel through confining barriers, “exploring” the corresponding environment on a nanoscale. These considerations are essential, especially with respect to applications.
Image
Figure 1.1 Schematic illustration of a (deformed) semiconductor core capped by semiconductor and/or (organic) surfactant shells. This combined quantum system is embedded in a matrix, which is treated as a continuum and supported by a substrate.

1.2 Quantum Confinement

1.2.1 Basic Concepts

A whole bunch of textbooks describes the treatment of excited states of (semiconductor) QDs, taking into account quantum confinement [Woggon, 1997; Gaponenko, 1998; Gaponenko, 2010; Rogach, 2008; Gavrilenko, 2011]. Therefore we will restrict ourselves here to the basic principles without going into detail. The band energy of a particle in a quasi-infinite bulk semiconductor is described by the dispersion relation
E(k)=EG+2k22m*
(1.1)
with band-gap energy EG and the reciprocal effective mass 1/m* at k = 0 according to
1m*=12d2Edk2.
(1.2)
The band structure is characterized in Fig. 1.2 for II–VI semiconductors (e.g., CdSe or ZnS) with a direct band gap.
Image
Figure 1.2 Simplified band-gap scheme of direct-gap II–VI semiconductors (zinc-blende and wurtzite type). HH and LH correspond to heavy and light hole valence subbands, respectively, while SO is the spin-orbit split-off band. The conduction band is related to the metal atoms, while the valence band is related to the chalcogenides. From Issac, A. (2006). Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric Environments, PhD Thesis, TU Chemnitz, Germany, with kind permission from Abey Issac.
For semiconductors like CdS, CdSe, ZnS, or ZnSe, the conduction band is formed from s orbitals of the metal ions Cd or Zn, whereas the valence band corresponds to porbitals of the chalcogenides S or Se. While the conduction band can in most cases be approximated by parabolic potentials, the valence bands are partly degenerate and more complex, depending on the crystal structure (zinc-blende or wurtzite). We will describe the details after introducing quantum confinement.
Without quantum size effects the (optically generated) electron–hole pair is a hydrogen-like bound state, the so-called exciton. The interacting hole and electron (electron-hole pair) are described by the Hamiltonian in Eq. 1.3, which applies when the size of an NC is comparable to the critical length parameters, that is, the de Broglie wavelength λ and the exciton Bohr radius aB of the quasi-particles: electron, hole, and exciton. It is described as
H=22me*e222mh*h2e2ε2|rerh|
(1.3)
where me(h)* is the effective mass of the electron (hole), respectively, and the static dielectric constant of the bulk semiconductor is ε2 (~9.5 for CdSe). The exciton is similarly, as a hydrogen atom, characterized by the exciton Bohr radius aB according to
aB=2ε2e2[1me*+1mh*].
(1.4)
aB is in the range of 1–10 nm for typical II–VI semiconductors. In this range the QD is with respect to lattice constants of a macroscopic solid, but quantum size effects become important for the quasiparticles. Figure 1.3 shows schematically how the various scales (lattice constant, Bohr radius, crystal size) are related.
Image
Figure 1.3 Schematic presentations of a Wannier exciton with a constant Bohr radius aB of an electron (e−)−hole (h+) pair (exciton) upon variation of the nanocrystal size D with a constant lattice constant. Left: DaB; middle: DaB; r...

Índice