Improving Abiotic Stress Tolerance in Plants
eBook - ePub

Improving Abiotic Stress Tolerance in Plants

M. Iqbal R. Khan, Amarjeet Singh, Péter Poór, M. Iqbal R. Khan, Amarjeet Singh, Péter Poór

Compartir libro
  1. 322 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Improving Abiotic Stress Tolerance in Plants

M. Iqbal R. Khan, Amarjeet Singh, Péter Poór, M. Iqbal R. Khan, Amarjeet Singh, Péter Poór

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide.

Features

· Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants

· Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability

· Stimulates synthesis of information for plant stress biology for biotechnological applications

· Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement

Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Improving Abiotic Stress Tolerance in Plants un PDF/ePUB en línea?
Sí, puedes acceder a Improving Abiotic Stress Tolerance in Plants de M. Iqbal R. Khan, Amarjeet Singh, Péter Poór, M. Iqbal R. Khan, Amarjeet Singh, Péter Poór en formato PDF o ePUB, así como a otros libros populares de Sciences biologiques y Botanique. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
CRC Press
Año
2020
ISBN
9780429648526
Edición
1
Categoría
Botanique

1 Spectrum of Physiological and Molecular Responses in Plant Salinity Stress Tolerance

Insha Amin, Aditya Banerjee, Abbu Zaid, Mudasir A. Mir, Shabir H. Wani, Nazeer Ahmed, Aryadeep Roychoudhury, and Khalid Z. Masoodi

CONTENTS

1.1 Introduction
1.2 Mechanisms Adopted for Salt Adaptations
1.3 Effect of Salinity on Plant Growth and Development
1.4 Salinity and the Antioxidant System
1.5 Salinity and Osmotic Balance
1.6 Cell Membrane Lipid Modification
1.7 Salinity and Transporters
1.8 Salinity and Phytohormone Synthesis
1.9 Future Perspectives
Acknowledgments
References

1.1 Introduction

Salinity stress is regarded as one of the principal environment stresses that retard growth and productivity of crop plants, especially in arid and semi-arid regions of the world (Rozema and Flowers, 2008). According to Munns and Tester (2008), globally more than 800 million hectares of arable lands are severely affected by salinity stress, which corresponds to 50% of all irrigated lands (Sairam and Tyagi, 2004). Salt stress is a physiological condition characterized by increased concentrations of soluble salts inside the cells leading to an imbalance in the cell steady state (Joshi et al., 2016; Khan et al., 2017). Salt stress induces ion toxicity due to increased levels of ions like sodium (Na+), chloride (Cl) and sulfate (SO42–). Sodium chloride (NaCl) is the most widely present and most soluble salt, and therefore Na+ accounts for the majority of the salt stress-related symptoms in the plants. There can be approximately 40 mM NaCl concentration and electrical conductivity (EC) of 4dS/m in the soils affected by salinity (Acosta-Motos et al., 2017). There is an increased concentration of Na+ ions in the salt-rich soils with a concomitant increase in carbonate/bicarbonate levels making these soils highly alkaline (pH greater than 7). Salinity stress results in an imbalance of ion homeostasis due to an increase in the concentration of Na+ ions as well as the simultaneous decrease in potassium (K+) concentration (Liu et al., 2018). Many plants show a reduced growth, deteriorated quality and a significant decrease in productivity under such salt levels because salinity stress triggers complex signaling pathways to inhibit growth, development and plant physiological processes (Naeem et al., 2012). Salinity stress limits photosynthetic potential as a result of disorganized chloroplast thylakoids (Khan et al., 2014; Fatma et al., 2016) and impairment in the diffusion rate of carbon dioxide (CO2) via decreasing conductance of stomata and mesophyll cells (Flexas et al., 2004). Rasool et al. (2013) conducted an experiment to evaluate the effect of salt stress on growth and some key antioxidants in eight chickpea genotypes which were grown in a hydroponic environment. Their results indicate that salt stress-induced oxidative stress by hampering the growth and physiology of the cells. Salinity stress results in oxidative damage through orchestrating the production of reactive oxygen species (ROS), which can cause cell death by damaging proteins, lipids, RNA and DNA (Gill and Tuteja, 2010; Anjum et al., 2015; Ahmad et al., 2016). Plants possess intricate mechanisms undergoing complex crosstalks for sensing of environmental stresses (Wani et al., 2013). To survive under such sub-optimal conditions, salt-tolerant plants like halophytes have evolved a well-integrated adaptive response at the molecular, cellular and physiological levels to ensure survival, distribution and productivity (Flowers and Muscolo, 2015). Various salt tolerance mechanisms have been comprehensively depicted in Figure 1.1. These adaptation mechanisms can be associated with detoxification, protein degradation, synthesis of osmoprotectant and antioxidants, overexpression of water and ion channels and accumulation of stress-responsive transcription factors (TFs) like WRKY, NAC, bZIP, MYB, MYC, etc. (Hiz et al., 2014; Banerjee and Roychoudhury, 2017). The TFs upregulate osmotic responsive (OR) genes encoding late embryogenesis abundant (LEA) proteins, heat shock proteins (HSPs) and antioxidant enzymes (Banerjee and Roychoudhury, 2016). The salt-tolerant genotypes accommodate the stress-mediated low water potential by maintaining a high relative water content (RWC) (Joshi and Karan, 2013). Salinity initiates multi-level regulation of gene expression through complex transcriptional networks (Singh and Laxmi, 2015). At the molecular level, the identification and characterization of candidate genes for the accumulation of ions and movement of water molecules are of paramount importance in dissecting underlying mechanisms of plants’ salt stress tolerance. The salt overly sensitive (SOS1) gene, which encodes an antiporter Na+/H+ in plasma membrane, can play a significant role in deciphering mechanisms related to how Na+ ions are excluded out of a salt-stressed cell and controlled via their long-distance transport from the roots to shoots in Arabidopsis thaliana (Shi et al., 2002). In plants, salt stress is known to increase the expression level of SOS1, which might confer salt stress tolerance (Gao et al., 2016). In a recent study, Liu et al. (2018) studied the growth, ionic response and gene expression analysis in ryegrass under salt stress conditions and observed that salinity tolerance is related to the decreased expressions of SOS1, NHX1 and TIP1 in the shoots, and increased expressions of NHX1 and PIP1 in the roots. These reports suggest that the coordination of genes for regulating the homeostasis of ions might prove beneficial for enhancing plant salinity stress tolerance. Nevertheless, the characterization and incorporation of selected salt-responsive genes like DREB, SOS, HKT, NHX, PMP3, etc., using transgenic technology can help to design salt-tolerant lines and promote agricultural expansion.
FIGURE 1.1 Various salt-tolerance mechanisms in plants.

1.2 Mechanisms Adopted for Salt Adaptations

Ion toxicity and the hyperosmolar interior are the two important factors affecting the plants reared on soils with high salt concentrations. Adaptation to soil salinity is definitely one of the most complicated biological phenomena carried out by plants in order to maintain a steady state inside the cells. Plants adapt to many abiotic stresses at molecular, cellular, biochemical and physiological levels (Adem et al., 2014). Various adaptations include the regulation of ion transport and maintenance of water balance, vacuolar sequestration of Na+ ions, retention of K+ ions, accumulation of compatible solutes for osmotic adjustments and reactive oxygen species (ROS) scavenging at the gene and transcriptional levels.

1.3 Effect of Salinity on Plant Growth and Development

Ionic stress is predominant among the various abiotic stresses which act as limiting factors for plant growth and survival (Adem et al., 2014). There is a detrimental effect of salt excess on almost all the developmental parameters like seedling, flowering, chlorophyll content, internodal growth, etc. During salinity stress, there is a change in the concentration of ions in the soil around the root tip causing an imbalance in water potential leading to osmotic stress first and ending in ionic toxicity. This leads to shortening and swelling of the roots due to reduced cell division and proliferation in the root meristematic zone (Li et al., 2014b). It limits leaf extension, photosynthesis and biomass accumulation in plants (Rahnama et al., 2010). A significant reduction occurs in leaf elongation due to loosening of epidermal wall rigidity (Zörb et al., 2015). NaCl changes stem morphology by decreasing the number, diameter and length of internodes leading to stunted plant height (Nja et al., 2018). In olives, high salt levels cause significant reductions in the number and length of roots and an increased root turnover leading to restricted lifespan and development (Soda et al., 2017). Salt stress induces leaf discoloration, wilting, leaf bronzing and necrosis, thus derailing the aesthetic quality of plants (Valdez-Aguilar et al., 2011). Salt stress negatively affects flowering which can lead to drawbacks in the reproductiv...

Índice