The Higgs Hunter's Guide
eBook - ePub

The Higgs Hunter's Guide

John F. Gunion

Compartir libro
  1. 448 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

The Higgs Hunter's Guide

John F. Gunion

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es The Higgs Hunter's Guide un PDF/ePUB en línea?
Sí, puedes acceder a The Higgs Hunter's Guide de John F. Gunion en formato PDF o ePUB, así como a otros libros populares de Sciences physiques y Physique. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
CRC Press
Año
2018
ISBN
9780429976070
Edición
1
Categoría
Physique
Chapter 1
Introduction and Preliminaries
Although the Higgs mechanism [1] was used to introduce mass into the Standard Model [2,3] two decades ago, experimental sensitivity to a Standard Model Higgs boson remains extremely limited. Masses below about 2mμ can be excluded by a combination of low energy experimental data on nuclear transitions and rare decays of K mesons. Recent results in K and B decays probably rule out masses from 2mμ to 2mτ. Upsilon decays are potentially sensitive to masses above 2mμ, up to about 5 GeV, but uncertainties regarding the exact magnitude of the expected decay rate to Higgs prevent firm conclusions at this time; although no Higgs bosons have been observed in such decays. Certainly, it will be 1990 (at the earliest) before experiments begin to probe the mass region above 5 GeV, where one might most naively expect to find the Standard Model Higgs boson.
As is often emphasized [4, 5, 6], the Higgs sector of the Standard Model is not understood from a fundamental point of view, although it performs technically in an entirely satisfactory way as an effective low energy theory, without conflict or contradiction. The physics that underlies electroweak symmetry breaking is simply not certain, although theorists may have guessed how it functions.
1.1 The Higgs Mechanism
Let us review the Higgs mechanism, to recall how the Higgs boson arises as the direct physical manifestation of the origin of mass in the Standard Model.* The Standard Model is a gauge theory. The SU(2) × U(1) gauge invariance of the theory requires masses of the gauge bosons to be zero, since the presence of a mass term for the gauge bosons violates gauge invariance (M2AμAμ is not invariant if AμAμμχ where χ is a function of position in space-time, so M2 must be zero). The Higgs mechanism circumvents this constraint by beginning with a gauge invariant theory having massless gauge bosons, and ending with a spectrum having massive gauge bosons, after algebraic transformations on the Lagrangian. The physics leading to a gauge boson mass and a physical Higgs boson is contained in the simple Abelian case, which we now review.
Assume there exists a complex scalar boson ϕ and a massless gauge boson Aμ. Assume the Lagrangian of the theory has the form
L=(Dμϕ)*(Dμϕ)+μ2ϕ*ϕλ(ϕ*ϕ)214FμvFμv.
(1.1)
The parameters are constrained by λ > 0 (so that the potential is bounded from below), and μ2 > 0. Fμν is the antisymmetric tensor of the gauge boson field, Fμν = μAννAμ. Invariance of the theory under a local gauge transformation,
ϕϕ'=eigχ(x)ϕAμA'μ=Aμμχ(x),
(1.2)
is guaranteed if in the Lagrangian we use the covariant derivative Dμ = μ + igAμ, in place of the ordinary partial derivative ∂μ.
The potential for the scalar field has its minimum value at ϕ = v/2 = μ2/2λ. It is appropriate to expand ϕ near its minimum to find the spectrum of the theory, so write
ϕ=[v+h(x)]/2
(1.3)
where where h(x) is a real field. Substituting this into L, we have explicitly
L=12[(μigAμ)(v+h)(μigAμ)(v+h)] +12μ2(v+h)214λ(v+h)414FμvFμv.
(1.4)
This contains several important terms. There is a term (g2v2/2)AμAμ that should be interpreted as a mass term for the gauge boson. There is a term λv2h2 that is a mass term for the scalar boson. There are interaction terms h3, h4, hAA, and h2AA, with related strengths. The theory with a complex scalar boson and a massless gauge boson has been reinterpreted as a theory with a real scalar boson and a massive gauge boson, because the scalar potential had its minimum at a value of ϕ that was non-zero. This way of giving mass to the gauge boson is called the Higgs mechanism [1].
Four things should be emphasized for our purposes. First there is a real boson, h, that should occur as a physical boson—the Higgs boson. Second, its mass depends on λ and on v. The gauge boson mass determines v, but λ is a parameter characteristic of the scalar potential and no one has ever found a way to calculate or determine λ without finding experimental information about the Higgs spectrum itself. Therefore the mass of the Higgs boson is unknown. Third, the interaction terms (plus those that occur when fermions are given mass) determine the production mechanisms and decays of the Higgs boson (i.e., how it couples to particles that are accelerated or ...

Índice