The Higgs Hunter's Guide
eBook - ePub

The Higgs Hunter's Guide

John F. Gunion

Partager le livre
  1. 448 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

The Higgs Hunter's Guide

John F. Gunion

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que The Higgs Hunter's Guide est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  The Higgs Hunter's Guide par John F. Gunion en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Physical Sciences et Physics. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2018
ISBN
9780429976070
Édition
1
Sous-sujet
Physics
Chapter 1
Introduction and Preliminaries
Although the Higgs mechanism [1] was used to introduce mass into the Standard Model [2,3] two decades ago, experimental sensitivity to a Standard Model Higgs boson remains extremely limited. Masses below about 2mÎŒ can be excluded by a combination of low energy experimental data on nuclear transitions and rare decays of K mesons. Recent results in K and B decays probably rule out masses from 2mÎŒ to 2mτ. Upsilon decays are potentially sensitive to masses above 2mÎŒ, up to about 5 GeV, but uncertainties regarding the exact magnitude of the expected decay rate to Higgs prevent firm conclusions at this time; although no Higgs bosons have been observed in such decays. Certainly, it will be 1990 (at the earliest) before experiments begin to probe the mass region above 5 GeV, where one might most naively expect to find the Standard Model Higgs boson.
As is often emphasized [4, 5, 6], the Higgs sector of the Standard Model is not understood from a fundamental point of view, although it performs technically in an entirely satisfactory way as an effective low energy theory, without conflict or contradiction. The physics that underlies electroweak symmetry breaking is simply not certain, although theorists may have guessed how it functions.
1.1 The Higgs Mechanism
Let us review the Higgs mechanism, to recall how the Higgs boson arises as the direct physical manifestation of the origin of mass in the Standard Model.* The Standard Model is a gauge theory. The SU(2) × U(1) gauge invariance of the theory requires masses of the gauge bosons to be zero, since the presence of a mass term for the gauge bosons violates gauge invariance (M2AÎŒAÎŒ is not invariant if AÎŒ → AÎŒ – ∂Όχ where χ is a function of position in space-time, so M2 must be zero). The Higgs mechanism circumvents this constraint by beginning with a gauge invariant theory having massless gauge bosons, and ending with a spectrum having massive gauge bosons, after algebraic transformations on the Lagrangian. The physics leading to a gauge boson mass and a physical Higgs boson is contained in the simple Abelian case, which we now review.
Assume there exists a complex scalar boson ϕ and a massless gauge boson AÎŒ. Assume the Lagrangian of the theory has the form
L=(DΌϕ)*(DΌϕ)+ÎŒ2ϕ*ϕ−λ(ϕ*ϕ)2−14FÎŒvFÎŒv.
(1.1)
The parameters are constrained by λ > 0 (so that the potential is bounded from below), and ÎŒ2 > 0. FΌΜ is the antisymmetric tensor of the gauge boson field, FΌΜ = ∂ΌAÎœ − ∂ΜAÎŒ. Invariance of the theory under a local gauge transformation,
ϕ→ϕ'=eigχ(x)ϕAΌ→A'ÎŒ=AΌ−∂Όχ(x),
(1.2)
is guaranteed if in the Lagrangian we use the covariant derivative DÎŒ = ∂Ό + igAÎŒ, in place of the ordinary partial derivative ∂Ό.
The potential for the scalar field has its minimum value at ϕ = v/2 = ÎŒ2/2λ. It is appropriate to expand ϕ near its minimum to find the spectrum of the theory, so write
ϕ=[v+h(x)]/2
(1.3)
where where h(x) is a real field. Substituting this into L, we have explicitly
L=12[(∂Ό−igAÎŒ)(v+h)(∂Ό−igAÎŒ)(v+h)] +12ÎŒ2(v+h)2−14λ(v+h)4−14FÎŒvFÎŒv.
(1.4)
This contains several important terms. There is a term (g2v2/2)AÎŒAÎŒ that should be interpreted as a mass term for the gauge boson. There is a term −λv2h2 that is a mass term for the scalar boson. There are interaction terms h3, h4, hAA, and h2AA, with related strengths. The theory with a complex scalar boson and a massless gauge boson has been reinterpreted as a theory with a real scalar boson and a massive gauge boson, because the scalar potential had its minimum at a value of ϕ that was non-zero. This way of giving mass to the gauge boson is called the Higgs mechanism [1].
Four things should be emphasized for our purposes. First there is a real boson, h, that should occur as a physical boson—the Higgs boson. Second, its mass depends on λ and on v. The gauge boson mass determines v, but λ is a parameter characteristic of the scalar potential and no one has ever found a way to calculate or determine λ without finding experimental information about the Higgs spectrum itself. Therefore the mass of the Higgs boson is unknown. Third, the interaction terms (plus those that occur when fermions are given mass) determine the production mechanisms and decays of the Higgs boson (i.e., how it couples to particles that are accelerated or ...

Table des matiĂšres