Contrast Agents for MRI
eBook - ePub

Contrast Agents for MRI

Experimental Methods

Valérie C Pierre, Matthew J Allen, Valérie C Pierre, Matthew J Allen

Compartir libro
  1. 598 páginas
  2. English
  3. ePUB (apto para móviles)
  4. Disponible en iOS y Android
eBook - ePub

Contrast Agents for MRI

Experimental Methods

Valérie C Pierre, Matthew J Allen, Valérie C Pierre, Matthew J Allen

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

As a practical reference guide for designing and performing experiments, this book focuses on the five most common classes of contrast agents for MRI namely gadolinium complexes, chemical exchange saturation transfer agents, iron oxide nanoparticles, manganese complexes and fluorine contrast agents. It describes how to characterize and evaluate them and for each class, a description of the theory behind their mechanisms is discussed briefly to orient the new reader. Detailed subchapters discuss the different physical chemistry methods used to characterize them in terms of their efficacy, safety and in vivo behavior. Important consideration is also given to the different physical properties that affect the performance of the contrast agents.
The editors and contributors are at the forefront of research in the field of MRI contrast agents and this unique, cutting edge book is a timely addition to the literature in this area.

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Contrast Agents for MRI un PDF/ePUB en línea?
Sí, puedes acceder a Contrast Agents for MRI de Valérie C Pierre, Matthew J Allen, Valérie C Pierre, Matthew J Allen en formato PDF o ePUB, así como a otros libros populares de Medicine y Diagnostics Imaging. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Año
2017
ISBN
9781788012546
Edición
1
Categoría
Medicine
CHAPTER 1
General Synthetic and Physical Methods
QUYEN N. DO,a JAMES S. RATNAKAR,b ZOLTÁN KOVÁCS,*b GYULA TIRCSÓ,*c FERENC KRISZTIÁN KÁLMÁN,c ZSOLT BARANYAI,c ERNŐ BRÜCHERc AND IMRE TÓTHc
a Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
b Advanced Imaging Research Center, University of Texas Southwestern, Dallas, TX 75390, USA
c Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology, University of Debrecen, H-4010 Debrecen, Hungary

1.1 Ligand Synthesis and Characterization

QUYEN N. DO, JAMES S. RATNAKAR AND ZOLTÁN KOVÁCS*

1.1.1 Relationships between Ligand Structure and Complex Properties

GdIII-based contrast agents for MRI are used in approximately 30% of MRI exams.1 Although the FDA-approved contrast agents are among the safest drugs on the market, their core, the GdIII ion, has a 50% lethal dose, (LD50) around 0.1–0.2 mmol kg−1.2 Therefore, for medical diagnostic applications, GdIII ions must be chelated by ligands to prevent the metal ion from being released. Administration of complexes with insufficient kinetic inertness can result in the debilitating disease nephrogenic systemic fibrosis (NSF), deposition of metal in the brain, or other issues.35 To develop safe and efficient GdIII-based (Chapter 2) and lanthanide-based CEST agents (Chapter 3) for MRI, it is important to understand the role of the ligand in determining the relaxivity, thermodynamic stability, and kinetic inertness of complexes. The fundamentals described in this chapter are intended to assist with the design of future imaging agents for MRI.
Ligands play a critical role not only in reducing the toxicity of metal ions, but also in optimizing the parameters that determine the relaxivity or CEST-enhancing ability of metal complexes. These parameters include the number of inner-sphere water molecules (q), the residence lifetime of coordinated inner-sphere water molecules (τM), and the rotational correlation time (τR). Chelators sometimes contain moieties for biosensing or reactive functionalities as points of attachment for targeting vectors. All chelators currently used in clinically approved contrast agents for MRI are octadentate ligands based either on the open-chain ligand diethylenetriaminepentaacetic acid (DTPA) or the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) (Figure 1.1). Most reported responsive and bifunctional ligands are also derivatives of these two chelators. With both of these ligands, the ninth coordination site of GdIII is occupied by a rapidly exchanging water molecule that transfers the paramagnetic relaxation effect of the metal ion to the pool of bulk water. Properties of ligands, such as total basicity (sum of the protonation constants), basicity of the first protonation site, preorganization, and rigidity, influence the thermodynamic stability and kinetic behavior of the resulting metal complexes.
image
Figure 1.1 The two standard ligand scaffolds of clinically used GdIII complexes: DTPA and DOTA.
The bonding in lanthanide complexes is predominantly ionic, and coordination geometries are largely determined by the steric bulk of the ligands. Because LnIII ions are considered to be hard Lewis acids, they favor hard donor atoms, such as fluoride, oxygen, and, to a lesser extent, nitrogen. LnIII ions typically have coordination numbers of eight or nine, and they can form stable complexes with ligands that have matching denticities. LnIII ions form relatively stable complexes with ligands that enable the formation of five-membered chelate rings; ligands that form six-membered chelate rings are far less stable.612
The thermodynamic stability of a complex is expressed as the equilibrium constant written for the reaction between the free metal ion and the fully deprotonated ligand [eqn (1.1)].1315
image
(1.1)
The stability constant of the complex, KLnL, is defined as follows:
image
(1.2)
In aqueous solution, the ligand can be fully or partially protonated depending on both the pH of the solution and the protonation constants (basicity) of the ligand. The formation of the metal complex is thus essentially a competition between protons and the metal ion for the donor sites of the ligand. Consequently, the true stability of a complex at a given pH is determined by its conditional stability constant, KCLnL, which takes into account the protonation of the ligand. Thus, for the formation of a lanthanide chelate with one inner-sphere water molecule, the stability of the complex is characterized by the following equilibrium.
image
(1.3)
image
(1.4)
In eqn (1.4), [L]total is the total concentration of the free and protonated ligand species that are not bound to the lanthanide ion, and αH is the total or equilibrium ligand concentration ratio.1417αH is expressed using the [H+] and the protonation constants of the ligand as:
image
(1.5)
For polyaminopolycarboxylate ligands, there is a nearly linear relationship between the basicity of the ligand, determined in terms of the sum of the protonation constants, Σlog Ki, and the stability of the corresponding GdIII complexes (Figure 1.2). Deviations were reported for ligands that do not form five-membered chelate rings, for ligands that have non-coordinating peripheral groups that undergo protonation, and for non-polyaminocarboxylate ligands. For DTPA- and DOTA-type ligands, more basic ligands tend to form complexes with higher stabilities.15,16
image
Figure 1.2 Linear correlation between the stability of the GdIII complexes and the total basicity of the ligands for common polyaminopolycarboxylates. The graph is based on stability constant data reported in ref. 16.
According to the chelate effect, metal complexes with polydentate ligands are more stable than similar complexes with the same number of monodentate ligands. Macrocyclic ligands with the same number of donor atoms as linear ligands tend to be even more stable; this is known as the macrocyclic effect.6,1820 The chelate effect is driven by entropy because the number of particles increases as l...

Índice