Cellulose Science and Technology
eBook - ePub

Cellulose Science and Technology

Chemistry, Analysis, and Applications

Thomas Rosenau, Antje Potthast, Johannes Hell, Thomas Rosenau, Antje Potthast, Johannes Hell

Compartir libro
  1. English
  2. ePUB (apto para móviles)
  3. Disponible en iOS y Android
eBook - ePub

Cellulose Science and Technology

Chemistry, Analysis, and Applications

Thomas Rosenau, Antje Potthast, Johannes Hell, Thomas Rosenau, Antje Potthast, Johannes Hell

Detalles del libro
Vista previa del libro
Índice
Citas

Información del libro

This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science. • Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners
• Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization
• Maximizes readership by combining fundamental science and application development

Preguntas frecuentes

¿Cómo cancelo mi suscripción?
Simplemente, dirígete a la sección ajustes de la cuenta y haz clic en «Cancelar suscripción». Así de sencillo. Después de cancelar tu suscripción, esta permanecerá activa el tiempo restante que hayas pagado. Obtén más información aquí.
¿Cómo descargo los libros?
Por el momento, todos nuestros libros ePub adaptables a dispositivos móviles se pueden descargar a través de la aplicación. La mayor parte de nuestros PDF también se puede descargar y ya estamos trabajando para que el resto también sea descargable. Obtén más información aquí.
¿En qué se diferencian los planes de precios?
Ambos planes te permiten acceder por completo a la biblioteca y a todas las funciones de Perlego. Las únicas diferencias son el precio y el período de suscripción: con el plan anual ahorrarás en torno a un 30 % en comparación con 12 meses de un plan mensual.
¿Qué es Perlego?
Somos un servicio de suscripción de libros de texto en línea que te permite acceder a toda una biblioteca en línea por menos de lo que cuesta un libro al mes. Con más de un millón de libros sobre más de 1000 categorías, ¡tenemos todo lo que necesitas! Obtén más información aquí.
¿Perlego ofrece la función de texto a voz?
Busca el símbolo de lectura en voz alta en tu próximo libro para ver si puedes escucharlo. La herramienta de lectura en voz alta lee el texto en voz alta por ti, resaltando el texto a medida que se lee. Puedes pausarla, acelerarla y ralentizarla. Obtén más información aquí.
¿Es Cellulose Science and Technology un PDF/ePUB en línea?
Sí, puedes acceder a Cellulose Science and Technology de Thomas Rosenau, Antje Potthast, Johannes Hell, Thomas Rosenau, Antje Potthast, Johannes Hell en formato PDF o ePUB, así como a otros libros populares de Technik & Maschinenbau y Werkstoffwissenschaft. Tenemos más de un millón de libros disponibles en nuestro catálogo para que explores.

Información

Editorial
Wiley
Año
2018
ISBN
9781119217633

1
Aminocelluloses – Polymers with Fascinating Properties and Application Potential

Thomas Heinze Thomas Elschner and Kristin Ganske
Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, D‐07743 Jena, Germany

1.1 Introduction

Cellulose is a linear D‐glucan containing β‐1 → 4 linkages and is the world's most abundant natural polymer with an estimated annual global production of about 1.5 × 1012 tons and, hence, a very important renewable and sustainable resource [1]. Although unmodified cellulose is used largely as paper, board, and fibers, there is huge space to design novel and advanced products based on cellulose by its chemical modification. In particular, esters and ethers of cellulose are most important [1, 2].
Due to their low‐cost production, biodegradability, and low‐toxicity cationized polysaccharides are promising in fields of effluent treatment, papermaking, and food, cosmetic, pharmaceutical, petroleum, and textile industries, as well as in analytical chemistry and molecular biology [3]. In particular, cationic cellulose derivatives gain increasing interest in different scientific and industrial fields, e.g. as flocculation agents [4], being an alternative to toxic polyacrylamide. In Germany, the disposal of sludge treated with polyacrylamides has been forbidden in areas under cultivation since 2014 [5].
Considering the recent literature, the huge amount of publications was summarized in reviews about cationic synthetic polyelectrolytes [6] as well as cationized polysaccharides (amino and ammonium hydroxypropyl ethers) [3]. However, in this chapter, the authors will not review the cationic ethers; the overview refers to cationic esters, 6‐deoxy‐6‐amino cellulose derivatives, and amino carbamates of cellulose. In spite of the industrial applications that are usually associated with cationic polymers, a variety of advanced polymer coatings providing sophisticated features, e.g. biosensors or immuno assays, will be presented.

1.2 Amino‐/ammonium Group Containing Cellulose Esters

1.2.1 (3‐Carboxypropyl)trimethylammonium Chloride Esters of Cellulose

An efficient approach to cationic cellulose derivatives is the esterification of the hydroxyl groups with cationic carboxylic acids. Activated carboxylic acids such as acyl chlorides or acid anhydrides are not appropriate due to their limited solubility, availability, and the formation of acidic by‐products. However, the esterification applying imidazolides obtained from the corresponding carboxylic acid and N,N‐carbonyldiimidazole (CDI) is a mild and efficient synthesis strategy [2].
To synthesize cationic cellulose esters (3‐carboxypropyl)trimethylammonium chloride was activated with CDI in dimethylsulfoxide (DMSO) separately and allowed to react with cellulose dissolved in N,N‐dimethylacetamide (DMA)/LiCl [7]. Thus, a product with a degree of substitution (DS) of 0.75 was accessible that could be characterized by 13C NMR spectroscopy (Figure 1.1).
13C NMR spectrum of cellulose (3-carboxypropyl)trimethylammonium chloride ester in DMSO-d6, with high peaks labeled 10, 11, DMSO, 8, and 9. The skeletal formula of the said compound is placed at the left portion.
Figure 1.1 13C NMR spectrum of cellulose (3‐carboxypropyl)trimethylammonium chloride ester in DMSO‐d6.
Source: Vega et al. 2013 [7]. Reproduced with permission of American Chemical Society.
Cellulose (3‐carboxypropyl)trimethylammonium chloride esters adsorbed on cellulose films may trigger the protein adsorption, which is a key parameter in the design of advanced materials for a variety of technological fields [8]. The protein affinity to the surface can be controlled by the charge density and solubility, adjusted by the pH value, the concentration of protein and the DS of the tailored cationic cellulose derivative. To understand the influence of the cationic cellulose ester on the protein affinity, the interaction capacity with fluorescence‐labeled bovine serum albumin (BSA) at different concentrations and pH values was carried out (Figure 1.2). The adsorbed material was quantified applying QCM‐D (quartz crystal microbalance with dissipation monitoring, wet mass) and MP‐SPR (multi‐parameter surface plasmon resonance, dry mass). Thus, the amount of coupled water in the layer could be evaluated by a combination of QCM‐D and surface plasmon resonance (SPR) data. According to these studies the interaction decreases in order of pH 5 > pH 6 > pH 7 and DShigh > DSlow, respectively. The adsorption of BSA may be adjusted over a range from 0.6 to 3.9 mg m−2 (dry mass). This approach is suitable to utilize BSA as blocking agent on the surface and achieve selective functionalization of cellulosic surfaces by functional proteins (e.g. antibodies).
Photo illustrating the interaction capacity of cellulose (3-carboxypropyl)trimethylammonium chloride esters with fluorescene-labeled bovine serum albumin at different pH values (pH 5, pH 6, and pH 7).
Figure 1.2 Cyclic olefin polymer slides equipped with cellulose and cellulose (3-carboxypropyl)trimethylammonium chloride ester incubated with different concentrations of labeled BSA (1000, 500, 10...

Índice