Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK
eBook - ePub

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK

Rulph Chassaing, Donald S. Reay

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK

Rulph Chassaing, Donald S. Reay

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres

À propos de ce livre

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK

Now in a new edition—the most comprehensive, hands-on introduction to digital signal processing

The first edition of Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK is widely accepted as the most extensive text available on the hands-on teaching of Digital Signal Processing (DSP). Now, it has been fully updated in this valuable Second Edition to be compatible with the latest version (3.1) of Texas Instruments Code Composer Studio (CCS) development environment. Maintaining the original's comprehensive, hands-on approach that has made it an instructor's favorite, this new edition also features:

  • Added program examples that illustrate DSP concepts in real-time and in the laboratory
  • Expanded coverage of analog input and output
  • New material on frame-based processing
  • A revised chapter on IIR, which includes a number of floating-point example programs that explore IIR filters more comprehensively
  • More extensive coverage of DSP/BIOS
  • All programs listed in the text—plus additional applications—which are available on a companion website

No other book provides such an extensive or comprehensive set of program examples to aid instructors in teaching DSP in a laboratory using audio frequency signals—making this an ideal text for DSP courses at the senior undergraduate and postgraduate levels. It also serves as a valuable resource for researchers, DSP developers, business managers, and technology solution providers who are looking for an overview and examples of DSP algorithms implemented using the TMS320C6713 and TMS320C6416 DSK.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK par Rulph Chassaing, Donald S. Reay en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Sciences physiques et Vagues et mĂ©canique des vagues. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.


DSP Development System
  • Installing and testing Code Composer Studio Version 3.1
  • Use of the TMS320C6713 or TMS320C6416 DSK
  • Programming examples
This chapter describes how to install and test Texas Instruments’ integrated development environment (IDE), Code Composer Studio (CCS), for either the TMS320C6713 or the TMS320C6416 Digital Signal Processing Starter Kit (DSK). Three example programs that demonstrate hardware and software features of the DSK and CCS are presented. It is recommended strongly that you review these examples before proceeding to subsequent chapters. The detailed instructions contained in this chapter are specific to CCS Version 3.1.
The Texas Instruments TMS320C6713 and TMS320C6416 Digital Signal Processing Starter Kits are low cost development platforms for real-time digital signal processing applications. Each comprises a small circuit board containing either a TMS320C6713 floating-point digital signal processor or a TMS320C6416 fixed-point digital signal processor and a TLV320AIC23 analog interface circuit (codec) and connects to a host PC via a USB port. PC software in the form of Code Composer Studio (CCS) is provided in order to enable software written in C or assembly language to be compiled and/or assembled, linked, and downloaded to run on the DSK. Details of the TMS320C6713, TMS320C6416, TLV320AIC23, DSK, and CCS can be found in their associated datasheets [36–38]. The purpose of this chapter is to introduce the installation and use of either DSK.
A digital signal processor (DSP) is a specialized form of microprocessor. The architecture and instruction set of a DSP are optimized for real-time digital signal processing. Typical optimizations include hardware multiply-accumulate (MAC) provision, hardware circular and bit-reversed addressing capabilities (for efficient implementation of data buffers and fast Fourier transform computation), and Harvard architecture (independent program and data memory systems). In many cases, DSPs resemble microcontrollers insofar as they provide single chip computer solutions incorporating onboard volatile and nonvolatile memory and a range of peripheral interfaces and have a small footprint, making them ideal for embedded applications. In addition, DSPs tend to have low power consumption requirements. This attribute has been extremely important in establishing the use of DSPs in cellular handsets. As may be apparent from the foregoing, the distinctions between DSPs and other, more general purpose, microprocessors are blurred. No strict definition of a DSP exists. Semiconductor manufacturers bestow the name DSP on products exhibiting some, but not necessarily all, of the above characteristics as they see fit.
The C6x notation is used to designate a member of the Texas Instruments (TI) TMS320C6000 family of digital signal processors. The architecture of the C6x digital signal processor is very well suited to numerically intensive calculations. Based on a very-long-instruction-word (VLIW) architecture, the C6x is considered to be TI’s most powerful processor family.
Digital signal processors are used for a wide range of applications, from communications and control to speech and image processing. They are found in cellular phones, fax/modems, disk drives, radios, printers, hearing aids, MP3 players, HDTV, digital cameras, and so on. Specialized (particularly in terms of their onboard peripherals) DSPs are used in electric motor drives and a range of associated automotive and industrial applications. Overall, DSPs are concerned primarily with real-time signal processing. Real-time processing means that the processing must keep pace with some external event; whereas nonreal-time processing has no such timing constraint. The external event to keep pace with is usually the analog input. While analog-based systems with discrete electronic components including resistors and capacitors are sensitive to temperature changes, DSP-based systems are less affected by environmental conditions such as temperature. DSPs enjoy the major advantages of microprocessors. They are easy to use, flexible, and economical.
A number of books and articles have been published that address the importance of digital signal processors for a number of applications [1–22]. Various technologies have been used for real-time processing, from fiber optics for very high frequency applications to DSPs suitable for the audio frequency range. Common applications using these processors have been for frequencies from 0 to 96 kHz. It is standard within telecommunications systems to sample speech at 8 kHz (one sample every 0.125 ms). Audio systems commonly use sample rates of 44.1 kHz (compact disk) or 48 kHz. Analog/digital (A/D)-based data-logging boards in the megahertz sampling rate range are currently available.
Most of the work presented in this book involves the development and testing of short programs to demonstrate DSP concepts. To perform the experiments described in the book, the following tools are used:
1. A Texas Instruments DSP starter kit (DSK). The DSK package includes:
(a) Code Composer Studio (CCS), which provides the necessary software support tools. CCS provides an integrated development environment (IDE), bringing together the C compiler, assembler, linker, debugger, and so on.
(b) A circuit board (the TMS320C6713 DSK is shown in Figure 1.1) containing a digital signal processor and a 16-bit stereo codec for analog signal input and output.
(c) A universal synchronous bus (USB) cable that connects the DSK board to a PC.

Table des matiĂšres