Chemical Kinetics and Reaction Dynamics
eBook - ePub

Chemical Kinetics and Reaction Dynamics

Paul L. Houston

Partager le livre
  1. 352 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Chemical Kinetics and Reaction Dynamics

Paul L. Houston

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.
Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying question — `How do chemical reactions occur?` — leads to exciting, vibrant fields of modern research. The first aim is achieved by using relevant examples in presenting the basic material, and the second is attained by inclusion of chapters on surface processes, photochemistry, and reaction dynamics.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Chemical Kinetics and Reaction Dynamics est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Chemical Kinetics and Reaction Dynamics par Paul L. Houston en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Scienze fisiche et Chimica. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2012
ISBN
9780486131696
Sous-sujet
Chimica

1

Kinetic Theory of Gases

Chapter Outline
1.1 Introduction
1.2 Pressure of an Ideal Gas
1.3 Temperature and Energy
1.4 Distributions, Mean Values, and Distribution Functions
1.5 The Maxwell Distribution of Speeds
1.6 Energy Distributions
1.7 Collisions: Mean Free Path and Collision Number
1.8 Summary
Appendix 1.1 The Functional Form of the Velocity Distribution
Appendix 1.2 Spherical Coordinates
Appendix 1.3 The Error Function and Co-Error Function
Appendix 1.4 The Center-of-Mass Frame

1.1 INTRODUCTION

The overall objective of this chapter is to understand macroscopic properties such as pressure and temperature on a microscopic level. We will find that the pressure of an ideal gas can be understood by applying Newton’s law to the microscopic motion of the molecules making up the gas and that a comparison between the Newtonian prediction and the ideal gas law can provide a function that describes the distribution of molecular velocities. This distribution function can in turn be used to learn about the frequency of molecular collisions. Since molecules can react only as fast as they collide with one another, the collision frequency provides an upper limit on the reaction rate.
The outline of the discussion is as follows. By applying Newton’s laws to the molecular motion we will find that the product of the pressure and the volume is proportional to the average of the square of the molecular velocity, <v2>, or equivalently to the average molecular translational energy ∈. In order for this result to be consistent with the observed ideal gas law, the temperature T of the gas must also be proportional to <v2> or <∈>. We will then consider in detail how to determine the average of the square of the velocity from a distribution of velocities, and we will use the proportionality of T with <v2> to determine the Maxwell-Boltzmann distribution of speeds. This distribution, F(v) dv, tells us the number of molecules with speeds between v and v + dv. The speed distribution is closely related to the distribution of molecular energies, G(∈) d∈. Finally, we will use the velocity distribution to calculate the number of collisions Z that a molecule makes with other molecules in the gas per unit time. Since in later chapters we will argue that a reaction between two molecules requires that they collide, the collision rate Z provides an upper limit to the rate of a reaction. A related quantity λ is the average distance a molecule travels between collisions or the mean free path.
The history of the kinetic theory of gases is a checkered one, and serves to dispel the impression that science always proceeds along a straight and logical path.2 In 1662 Boyle found that for a specified quantity of gas held at a fixed temperature the product of the pressure and the volume was a constant. Daniel Bernoulli derived this law in 1738 by applying Newton’s equations of motion to the m...

Table des matiĂšres