Topology Optimization Design of Heterogeneous Materials and Structures
eBook - ePub

Topology Optimization Design of Heterogeneous Materials and Structures

Daicong Da

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Topology Optimization Design of Heterogeneous Materials and Structures

Daicong Da

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This book pursues optimal design from the perspective of mechanical properties and resistance to failure caused by cracks and fatigue. The book abandons the scale separation hypothesis and takes up phase-field modeling, which is at the cutting edge of research and is of high industrial and practical relevance. Part 1 starts by testing the limits of the homogenization-based approach when the size of the representative volume element is non-negligible compared to the structure. The book then introduces a non-local homogenization scheme to take into account the strain gradient effects. Using a phase field method, Part 2 offers three significant contributions concerning optimal placement of the inclusion phases. Respectively, these contributions take into account fractures in quasi-brittle materials, interface cracks and periodic composites. The topology optimization proposed has significantly increased the fracture resistance of the composites studied.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Topology Optimization Design of Heterogeneous Materials and Structures est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Topology Optimization Design of Heterogeneous Materials and Structures par Daicong Da en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans MatemĂĄticas et GeometrĂ­a. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley-ISTE
Année
2019
ISBN
9781119687535
Édition
1
Sous-sujet
GeometrĂ­a

PART 1
Multiscale Topology Optimization in the Context of Non-separated Scales

1
Size Effect Analysis in Topology Optimization for Periodic Structures Using the Classical Homogenization

In topology optimization of material modeling, the homogenization method is often adopted to link the microscopic and macroscopic scales. However, scale separation is often assumed in classical homogenization theory. This assumption states that the characteristic lengths of the microstructural details are much smaller than the dimensions of the structure, or that the characteristic wavelength of the applied load is much larger than that of the local fluctuation of mechanical fields (Geers et al. 2010). In additive manufacturing of architecture materials such as lattice structures, the manufacturing process may induce limitations on the size of local details, which can lead to a violation of scale separation when the characteristic size of the periodic unit cells within the lattice are not much smaller than that of the structure. In such a case, classical homogenization methods may lead to inaccurate description of the effective behavior as non-local effects, or strain-gradient effects, may occur within the structure. On the other hand, using a fully detailed description of the lattice structure in an optimization framework could be computationally expensive.
In this chapter, we first develop a multiscale topology optimization procedure for periodic structures based on classical homogenization theory in the context of non-separated scales. The dimensions of the unit cell are not negligible with respect to the whole structure, which range from large to small compared to those of the structure to highlight the size effect. More specifically, a relocalization scheme is proposed based on the homogenization method to link the two scale fields, allowing the topology optimization problem to be solved on a coarse mesh. A corresponding reference solution is obtained by fully meshing the heterogeneities in the whole structure.
The classical homogenization technique is reviewed in section 1.1, where details of the numerical computation of effective material properties as well as the relocalization scheme are also provided. The presented topology optimization model and procedure are given in section 1.2. Numerical experiments are conducted in section 1.3 to fully investigate the size effect of the periodic unit cells. Finally, section 1.4 draws the conclusion.

1.1. The classical homogenization method

In this section, the computation of effective or homogenized material properties of heterogeneous composites in the context of linear elasticity is reviewed. The local problem at the microscopic scale with different types of boundary conditions is first introduced, followed by the numerical implementation in order to evaluate the effective elastic matrix using the classical finite element method (FEM).

1.1.1. Localization problem

A heterogeneous structure composed of two-phase composites is considered, as...

Table des matiĂšres