Primer on Radiation Oncology Physics
eBook - ePub

Primer on Radiation Oncology Physics

Video Tutorials with Textbook and Problems

Eric Ford

Partager le livre
  1. 356 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Primer on Radiation Oncology Physics

Video Tutorials with Textbook and Problems

Eric Ford

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Gain mastery over the fundamentals of radiation oncology physics! This package gives you over 60 tutorial videos (each 15-20 minutes in length) with a companion text, providing the most complete and effective introduction available. Dr. Ford has tested this approach in formal instruction for years with outstanding results. The text includes extensive problem sets for each chapter. The videos include embedded quizzes and "whiteboard" screen technology to facilitate comprehension. Together, this provides a valuable learning tool both for training purposes and as a refresher for those in practice.

Key Features

  • A complete learning package for radiation oncology physics, including a full series of video tutorials with an associated textbook companion website
  • Clearly drawn, simple illustrations throughout the videos and text
  • Embedded quiz feature in the video tutorials for testing comprehension while viewing
  • Each chapter includes problem sets (solutions available to educators)

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Primer on Radiation Oncology Physics est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Primer on Radiation Oncology Physics par Eric Ford en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Medicine et Oncology. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2020
ISBN
9780429950230
Édition
1
Sous-sujet
Oncology

1

Basic Physics

1.1 Waves and Particles

1.1.1 Electromagnetic Waves

Electromagnetic waves come in many forms, e.g. radio waves, lights, and X-rays. In 1870, James Clerk Maxwell developed a formalism to describe these electromagnetic waves in which the changing magnetic field creates an electric field and vice versa to form a self-sustaining wave that propagates at a speed given the symbol c, the speed of light, which is 3·108 m/s in a vacuum. Three properties describe waves: the speed, c, wavelength, λ, and frequency, Μ (sometimes written as f ). See Figure 1.1.1. These are related by
Images
FIGURE 1.1.1
Properties of electromagnetic waves.
c = λ ⋅ Îœ (1.1)
The units are c (m/s), λ (m), and frequency, Μ (1/s given the special unit Hertz, Hz). The type of wave is determined by the wavelength (or equivalently the frequency), see Figure 1.1.1. Note that optical light occupies a relatively narrow range of the spectrum from 400 to 700 nanometers (nm).
At very short wavelengths electromagnetic waves are X-rays. X-rays were first produced and characterized by Wilhelm Roentgen in 1895. They have a wavelength similar to the size of the atom itself. It is more common to describe these waves by their energy instead of their wavelength. The energy, E, is given by
E = h Μ (1.2)
Here h is Planck’s constant, a fundamental constant of nature whose value is 6.626·10−34 m2 kg/s. A common unit for energy useful for medical physics applications is the electron-volt, eV, which is the energy gained by one electron moving through a potential of one volt. X-rays and particles in medical physics applications often have energies in keV to MeV range.

1.1.2 Particles

The various particles of importance for medical physics applications are shown in Table 1.1 The electron was first discovered by J.J. Thompson in 1897. Somewhat later, in 1908, Robert A. Millikan and Harvey Fletcher performed a series of experiments which showed that the charge of the electron is quantized, i.e. is present discrete amounts. These experiments involved suspending oil drops in an electric field (see the video for further background). The charge of the electron, we now know, is 1.602·10−19 Coulombs (C).
Another important property of particles is their electric charge. One way to measure this is to measure the charge-to-mass ratio. Then, if the mass is known, the charge is known. The charge-to-mass ratio can be found by measuring the movement of a particle through a magnetic field. Any charged particle moving in a magnetic field experiences a force perpendicular to its motion (Figure 1.1.2) given by F = qvB, where q is the charge, v is the speed, and B is the magnetic field. This force bends the particle into a curved trajectory. The force on a charged particle moving in a magnetic field will have various practical applications in medical physics and forms a key concept.
Images
FIGURE 1.1.2
Force on a moving charged particle in a magnetic field, B.
Table 1.1 shows the masses of the various particles. Note that because of Albert Einstein’s energy–mass equivalence, E = mc2, the rest mass of a particle can be written either as a mass (e.g. kg) or as an energy (e.g. MeV). Note that the mass of a proton is nearly 2000 times that of an electron, a fact that will have many implications for radiation therapy physics.
TABLE 1.1
Fundamental Particles of Importance in the Radiation Therapy Context
Particle
Symbol
Charge
Rest Mass Energy
(E = mc2)
Electron
e−
−
0.511 MeV
Positron (antipar...

Table des matiĂšres