Mathematical Interest Theory
eBook - PDF

Mathematical Interest Theory

Third Edition

Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel

Partager le livre
  1. English
  2. PDF
  3. Disponible sur iOS et Android
eBook - PDF

Mathematical Interest Theory

Third Edition

Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Mathematical Interest Theory provides an introduction to how investments grow over time. This is done in a mathematically precise manner. The emphasis is on practical applications that give the reader a concrete understanding of why the various relationships should be true. Among the modern financial topics introduced are: arbitrage, options, futures, and swaps. Mathematical Interest Theory is written for anyone who has a strong high-school algebra background and is interested in being an informed borrower or investor. The book is suitable for a mid-level or upper-level undergraduate course or a beginning graduate course.The content of the book, along with an understanding of probability, will provide a solid foundation for readers embarking on actuarial careers. The text has been suggested by the Society of Actuaries for people preparing for the Financial Mathematics exam. To that end, Mathematical Interest Theory includes more than 260 carefully worked examples. There are over 475 problems, and numerical answers are included in an appendix. A companion student solution manual has detailed solutions to the odd-numbered problems. Most of the examples involve computation, and detailed instruction is provided on how to use the Texas Instruments BA II Plus and BA II Plus Professional calculators to efficiently solve the problems. This Third Edition updates the previous edition to cover the material in the SOA study notes FM-24-17, FM-25-17, and FM-26-17.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Mathematical Interest Theory est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Mathematical Interest Theory par Leslie Jane Federer Vaaler, Shinko Kojima Harper, James W. Daniel en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Mathematics et Mathematical Analysis. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2019
ISBN
9781470455309
Section
1.3
Accumulation
and
amount
functions
13
Solution
If
interest
is
earned
continuously
using
the
given
linear
relation-
ship,
the
graph
of
A
1
,
000
(
t
)
is
a
line
segment
with
slope
250.
A
1
,
000
(
t
)
t
If
interest
is
only
paid
at
the
end
of
each
year,
the
graph
of
A
1
,
000
(
t
)
is
as
follows:
A
1
,
000
(
t
)
t

EXAMPLE
1.3.3
Problem:
Suppose
that
time
is
measured
in
years
and
an
investment
fund
grows
according
to
a
(
t
)
=
(1
.
2)
t
for
0
≀
t
≀
5.
Then
the
investment
fund
grows
at
a
constant
rate
of
20%
per
year.
(In
Section
1.5,
we
will
call
a
(
t
)
a
compound
interest
accumulation
function
with
annual
eïŹ€ective
interest
rate
i
=
.
2.)
Graph
the
accumulation
function
a
(
t
).

Table des matiĂšres