Eisler's Encyclopedia of Environmentally Hazardous Priority Chemicals
eBook - ePub

Eisler's Encyclopedia of Environmentally Hazardous Priority Chemicals

Ronald Eisler

Partager le livre
  1. 986 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Eisler's Encyclopedia of Environmentally Hazardous Priority Chemicals

Ronald Eisler

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Thousands of inorganic and organic chemicals and their metabolites enter the biosphere daily as a direct result of human activities. Many of these chemicals have serious consequences on sensitive species of natural resources, crops, livestock, and public health. The most hazardous of these were identified by a panel of environmental specialists from the U.S. Fish and Wildlife Service; these chemicals are the focus of this encyclopedia.
For each priority group of chemicals, information is presented on sources, uses, physical and chemical properties, tissue concentrations in field collections and their significance, lethal and sublethal effects under controlled conditions. This includes effects on survival, growth, reproduction, metabolism, carcinogenicity, teratogenicity, and mutagenicity - and proposed regulatory criteria for the protection of sensitive natural resources, crops, livestock, and human health. Taxonomic groups of natural resources covered include terrestrial and aquatic plants and invertebrates, fishes, amphibians, reptiles, birds, and mammals.* The only product that centers on the most hazardous environmental chemicals to sensitive natural resources
* The only single volume compendium on the subject, allowing ease in consulting
* Written by a noted national and international authority on chemical risk assessment to living organisms

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Eisler's Encyclopedia of Environmentally Hazardous Priority Chemicals est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Eisler's Encyclopedia of Environmentally Hazardous Priority Chemicals par Ronald Eisler en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Naturwissenschaften et Chemie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2007
ISBN
9780080547077
Chapter 1

ACROLEINa

1.1 Introduction

Acrolein (CH2=CHCHO) is an aldehyde that was first isolated in 1843 from the dry distillation of fats and glycerol. It is now known that acrolein is ubiquitous in the environment; it is often present in trace amounts in foods and as a component of smog, fuel combustion products such as wood smoke, exhaust emissions from internal combustion engines, and cigarette smoke. Atmospheric concentrations of acrolein over urban areas are between 2.0 and 7.0 ÎŒg/L; cigarette smoke, however contains about 10,000 ÎŒg of acrolein/L. Acrolein is classified as a hazardous chemical because of its reactivity and flammability. At low sublethal concentrations, acrolein is widely known for its acrid pungent odor and strong irritating effects on mucous membranes of the eyes and upper respiratory tract, its toxicity to cilia in all organisms, and its interference with nucleic acid synthesis in bacteria. In bulk, acrolein during storage or transfer is potentially hazardous if it becomes overheated or contaminated with water. For example, in 1982, 17,000 residents from Toft, Louisiana, were evacuated when two large tanks of acrolein began to burn.
Acrolein enters the aquatic environment from its use as an aquatic herbicide, industrial discharges, and as a by-product of the chlorination of organic compounds in wastewater and drinking water treatment. Dilute solutions of acrolein kill undesirable plant life in irrigation streams and ditches and have been used routinely in about 4000 km of irrigation canals in southeastern Australia to control submerged weeds, including Potamogeton tricarinatus, Elodea canadensis, and Vallisneria gigantia. Acrolein has also been used for many years in channel maintenance in the United States (especially in western states), Canada, Egypt, Argentina, Mexico, and Turkey. Unlike most other aquatic herbicides, acrolein rapidly dissipates from water by volatilization and degradation without leaving phytotoxic residues. However, acrolein provides only temporary control of submerged weeds and also kills fish and other aquatic life at recommended treatment concentrations. In one Montana stream, acrolein killed all fish in a 4-km stretch after application to control submerged weeds; some fish deaths were recorded as far as 6.4 km downstream.

1.2 Sources and Uses

Acrolein enters the environment as a result of normal metabolic processes; incomplete combustion of coal, wood, plastics, tobacco, and oil fuels; and industrial emissions. Acrolein has been detected in smog, food, and water. It is used extensively in chemical manufacture, for control of fouling organisms, and as herbicide to control submerged weeds in irrigation canals.

1.2.1 Sources

Acrolein is ubiquitous in the environment as a result of natural and anthropogenic sources. Sources of atmospheric acrolein include smog; incomplete combustion of coal, wood, gasoline, plastics and fats; tobacco smoke; and industrial emissions. The total amount of acrolein released into the atmosphere is unknown. In 1978, production losses of acrolein by emission from the four main U.S. plant locations were estimated at 34,682 kg; however, the gaseous emission streams are now either burned on emergence from the exhaust stack or sent to a furnace to destroy residual material. Acrolein is found in photochemical smog and contributes to the smog’s irritant capacity to the eye and respiratory pathways. Recorded maximum acrolein concentrations in smog ranged from 12.0 to 14.0 ÎŒg/L (0.025–0.032 mg/m3) in Los Angeles, between 1961 and 1963, and were 13.0 ÎŒg/L in Hudson County, New Jersey. For humans, exposure to atmospheric acrolein is greatest in the vicinity of incompletely combusted organic materials such as coal, wood, and petrol; highest acrolein concentrations are reported near forest fires and urban area fires. The burning of southern pine (Pinus sp.), for example, generates 22.0–121.0 mg of acrolein/kg of wood burned. Acrolein is also in the smoke of burning plastic materials. Air samples from more than 200 fires in Boston, Massachusetts, contained greater than 3000.0 ÎŒg acrolein/L (greater than 6.8 mg/m3) in more than 10% of all samples; greater than 3000.0 ÎŒg acrolein/L air is an immediately hazardous concentration for human life and health. Cigarette smoke in some enclosed areas may account for as much as 12,400.0 ÎŒg of acrolein/L air. In the case of an enclosed room of 30 m3 capacity, smoking 5 cigarettes raises the air concentration to about 50.0 ÎŒg acrolein/L and 30 cigarettes to 380.0 ÎŒg/L.
Acrolein is also generated when animal or vegetable fats are subjected to high temperatures. Acrolein was detected aboard submarines in trace concentrations as a degradation product during the heating of lubrication oils and edible fats. Large amounts of acrolein are generated from exhausts of internal combustion engines. Acrolein concentrations of 10,000.0 ÎŒg/L (23.0 mg/m3) have been measured in nondiesel automobile exhausts, 2900.0 ÎŒg/L in diesel engine emissions, and 2600.0–9600.0 ÎŒg/L in other internal combustion engines. Acrolein concentrations in air from several U.S. urban areas ranged from a maximum of 10.0 ÎŒg/L in 1960 to 1.8–3.4 ÎŒg/L in 1968; during this period, the air in Tokyo had an average acrolein concentration of 7.2 ÎŒg/L. Urban acrolein pollution is derived mainly from automobile exhaust and incomplete burning of refuse. Acrolein is formed during normal metabolic degradation of spermine and spermidine, glycerol, allyl formate, allyl alcohol, and cyclophosphamide. Acrolein was also in spores from the wheat stem fungus (Puccinia graminis) of infected wheat (Triticum aestivum); acrolein was the major chemical factor that normally induced infection processes in Puccinia.
Acrolein has been detected in effluent water streams from industrial and municipal sources. Municipal effluents from Dayton, Ohio, for example, contained between 20.0 and 200.0 ÎŒg acrolein/L in 6 of 11 analyzed samples. Acrolein is also a component of many foods, and processing may increase the acrolein content. Acrolein has been identified in raw turkey, potatoes, onions, coffee grounds, raw cocoa beans, alcoholic beverages, hops, white bread, sugarcane molasses, souring salted pork, and cooked bluefin tuna (Thunnus thynnus).
Occupational exposure to acrolein may occur during its production and isolation as a chemical intermediate or during the manufacture of acrylic acid, acrylic acid esters, and methionine. Other sources of acrolein in the workplace include emissions from rubber vulcanization plants, welding of metals treated with anticorrosion primers, and pitch-cooking plants; and skin contact during herbicidal applications for aquatic weed control, and from its use as a slimicide in paper and paperboard manufacture. Acute acrolein poisoning from occupational exposure is improbable. However, the risks of poisoning are significant in certain industries including welding of fat and oil cauldrons, smelting work and foundry operations, printing plants, linoleum and oil cloth factories, manufacture of insulators, tin plating of sheet iron, and processing of linseed oil.

1.2.2 Uses

Since its discovery in 1843, acrolein has been known to polymerize readily in the presence of many chemicals, and since 1947 it has been used safely in a wide variety of commercial applications. Acrolein is presently produced by the catalytic oxidation of propylene for the manufacture of methionine, glutaraldehyde, 1,2,6-hexane thiol, and other chemicals. The largest quantity of acrolein produced by this process is converted directly to acrylic acid and acrylic acid esters. In 1975, global production of acrolein was 59,000 metric tons; in 1980, this value was 102,000 tons – including 47,600 tons produced by the United States. In 1983, about 250,000 tons (about 550 million pounds) of acrolein were produced, and 92% were converted to acrylic acid, 5% to methionine, and 3% used as an aquatic herbicide. Acrolein copolymers are used in photography, in textile treatment, in the paper industry, as builders in laundry and dishwater detergents, and as coatings for aluminum and steel panels. Acrolein is used to scavenge sulfides from oil-field floodwater systems, to cross-link protein collagen in the leather tanning industry, and to fixate tissue of histological samples. The use of acrolein as a military poison gas has been advocated because of its lacrimatory and blistering properties; during World War I (1914–18) the French used acrolein – under the name of Papite – in hand grenades because of its irritating effect on the respiratory airways and the ocular mucosae.
Acrolein has been used since 1960 to control submerged aquatic weeds in irrigation systems in the United States, Australia, and other countries where open channels distribute water for crop production. Acrolein – as Magnacide H herbicide – is applied directly into agricultural irrigation systems at 1.0–15.0 mg/L. Water in treated canals is required by the Magnacide H label to be held for 6 days before discharge into receiving waters. Acrolein is preferable to sodium arsenite for herbicidal control of submerged weeds because arsenicals are persistent (up to 1 year), and the high arsenic concentrations that are attained in water may be hazardous to humans and livestock. Acrolein is extremely effective in killing submerged weeds that are difficult to control with other herbicides. Acrolein has also been used as a herbicide in ponds, drains, and other water bodies. In Australia, the concentration of acrolein in irrigation canals to control various species of Elodea, Potamogeton, and Vallisneria is usually less than 15,000.0 ÎŒg/L. In general, acrolein has a low order of toxicity to terrestrial plants. Most field and garden crops can tolerate water with as much as 15,000.0 ÎŒg acrolein/L without serious adverse effects. Acrolein, as discussed later, has comparatively low persistence and low accumulation in aquatic ecosystems. One disadvantage of its use as a herbicide is its pungent, irritating odor. Also, at recommended treatment concentrations, acrolein kills fish and other aquatic organisms; therefore, acrolein should be used only in aquatic systems where these resources are considered expendable.
Acrolein has been used to control bacteria, fungi, algae, and mollusks in cooling water systems: 1500.0 ÎŒg/L killed as much as 95% of the target species in a once-through treatment. Acrolein has been applied directly to the marine environment to control the growth and settlement of mussels (Mytilus edulis), and other fouling organisms in cooling water systems of coastal steam electric station power plants. Mussels in marine cooling water systems are controlled with 600.0 ÎŒg acrolein/L for 8 h daily for 3 days or with 700.0 ÎŒg/L for 3 h daily for 2 weeks. Acrolein prevents growth of microorganisms in liquid fuels such as jet fuels, in feed lines of subsurface wastewater injectors, and in water conduits of paper manufacturing plants.

1.3 Environmental Chemistry

Acrolein, the simplest member of the class of unsaturated aldehydes, has a pungent, irritating odor. It is volatile, flammable, and explosive, an...

Table des matiĂšres