Optoelectronic Devices: III Nitrides
eBook - ePub

Optoelectronic Devices: III Nitrides

Mohamed Henini, M Razeghi

Partager le livre
  1. 592 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Optoelectronic Devices: III Nitrides

Mohamed Henini, M Razeghi

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Tremendous progress has been made in the last few years in the growth, doping and processing technologies of the wide bandgap semiconductors. As a result, this class of materials now holds significant promis for semiconductor electronics in a broad range of applications.

The principal driver for the current revival of interest in III-V Nitrides is their potential use in high power, high temperature, high frequency and optical devices resistant to radiation damage.

This book provides a wide number of optoelectronic applications of III-V nitrides and covers the entire process from growth to devices and applications making it essential reading for those working in the semiconductors or microelectronics.

  • Broad review of optoelectronic applications of III-V nitrides

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Optoelectronic Devices: III Nitrides est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Optoelectronic Devices: III Nitrides par Mohamed Henini, M Razeghi en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Physical Sciences et Nanoscience. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2004
ISBN
9780080538112
Chapter 1

Introduction

M. Razeghia[email protected], aDepartment of Electrical and Computer Engineering, Center for Quantum Devices, Northwestern University, Cook Room 4051, 2220 Campus Drive, Evanston, IL 60208-3129, USA
M. Heninib[email protected], bSchool of Physics and Astronomy, University of Nottingham, NG7 2RD, UK

Publisher Summary

Wide bandgap III-nitrides—including (AI,Ga,In)-N—have seen enormous success in their development especially, in the latest stages of 20th century. Many substantial problems had to be overcome before these materials could constitute useful devices. High density of dislocations because of the lack of lattice-matched substrates and low doping efficiency were the most challenging problems that researchers in this area had to face. Today blue/violet light-emitting diodes and laser diodes based on (Al,In,Ga)-N have been successfully commercialized. Blue/green light emitting diodes (LEDs) have already found their market in full-color liquid crystal displays (LCDs) and traffic lights. The unique properties of III-nitrides lead to a range of applications from optoelectronic devices to high-power electronics. The wide bandgap of gallium nitride (GaN) makes this material suitable not only for light emitting source but also for high-temperature applications. GaN and its alloys have the potential for forming high power electronics such as transistors or thyristors. Ultraviolet solar-blind photodetectors based on AlGaN have applications in early missile threat detection and interception, chemical and biological threat detection, UV flame monitoring, and UV environmental monitoring. There are some other conceivable applications for III-nitrides such as surface acoustic wave generation, acousto-optic modulator, and devices that utilize negative electron affinity.

1.1 INTRODUCTION

Wide bandgap III-nitrides, including (AI,Ga,In)-N, have seen enormous success in their development especially in the latest stages of the 20th century. Many substantial problems had to be overcome before these materials could constitute useful devices. High density of dislocations due to the lack of lattice-matched substrates and low doping efficiency were the most challenging problems that researchers in this area had to face. At the beginning, it was hard to believe that a material with a dislocation density in the order of 108–1010 cm−2 would become the building block of many viable devices. However, thanks to the hard work of researches in this field, today blue/violet light-emitting diodes and laser diodes based on (Al,In,Ga)-N have been successfully commercialized. Blue/green LEDs have already found their market in full-color LCD displays and traffic lights, while blue LDs are expected to shortly replace red lasers in the current CD/DVD read/write systems. The unique properties of III-nitrides lead to a range of applications from optoelectronic devices to high-power electronics. The wide bandgap of GaN makes this material suitable not only for light emitting source but also for high-temperature applications. GaN and its alloys have the potential to form high power electronics such as transistors or thyristors. UV solar-blind photodetectors based on AlGaN have been demonstrated by several groups [1]. These detectors have applications in early missile threat detection and interception, chemical and biological threat detection, UV flame monitoring, and UV environmental monitoring. Due to the polar nature of the Ga-N bond, GaN does not possess inversion symmetry. Thus, when GaN is subject to an alternating electric field, the induced polarization is not symmetric. This property of GaN can be used in non-linear optics applications such as second-harmonic generation [2]. The same lack of inversion symmetry results in a huge piezoelectric field. There are some other conceivable applications for III-nitrides such as surface acoustic wave generation [3], acousto-optic modulator [4], and devices that utilize negative electron affinity [5].
Group III-nitride materials are different from some conventional semiconductors such as silicon (Si) and GaAs in a sense that under ambient conditions, the thermodynamically stable structure is wurtzite. Although zinc blende structure for GaN or InN could exist by forcing the film to grow on {001} crystal planes of cubic substrates, the intrinsic tendency of III-nitrides is to form a wurzite structure with a hexagonal symmetry. The large difference in electronegativity between the group III elements and nitrogen (Al = 1.18, Ga = 1.13, In = 0.99, N = 3.0) leads to very strong chemical bonds in III-nitride material system which together with a wide direct energy gap is the origin of some interesting properties of III-nitrides [6].
III-nitrides have a bandgap energy tunable from 6.2 eV for AIN to 3.4 eV for GaN to 2 eV or below for InN (The energy gap of InN has been the subject of many debates and it is not agreed upon yet. There have been some recent reports on the bandgap energy of InN being as narrow as 0.7 eV) [7,8]. This corresponds to a wavelength range of 200–650 nm or higher, covering a broad spectral range, from UV to visible.
Figure 1.1 demonstrates where III-nitride compound semiconductors stand compared to other semiconductors in the space of lattic...

Table des matiĂšres