Ecology
eBook - ePub

Ecology

From Individuals to Ecosystems

Michael Begon, Colin R. Townsend

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Ecology

From Individuals to Ecosystems

Michael Begon, Colin R. Townsend

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

A definitive guide to the depth and breadth of the ecological sciences, revised and updated

The revised and updated fifth edition of Ecology: From Individuals to Ecosystems – now in full colour – offers students and practitioners a review of the ecological sciences.

The previous editions of this book earned the authors the prestigious 'Exceptional Life-time Achievement Award' of the British Ecological Society – the aim for the fifth edition is not only to maintain standards but indeed to enhance its coverage of Ecology.

In the first edition, 34 years ago, it seemed acceptable for ecologists to hold a comfortable, objective, not to say aloof position, from which the ecological communities around us were simply material for which we sought a scientific understanding. Now, we must accept the immediacy of the many environmental problems that threaten us and the responsibility of ecologists to play their full part in addressing these problems. This fifth edition addresses this challenge, with several chapters devoted entirely to applied topics, and examples of how ecological principles have been applied to problems facing us highlighted throughout the remaining nineteen chapters.

Nonetheless, the authors remain wedded to the belief that environmental action can only ever be as sound as the ecological principles on which it is based. Hence, while trying harder than ever to help improve preparedness for addressing the environmental problems of the years ahead, the book remains, in its essence, an exposition of the science of ecology. This new edition incorporates the results from more than a thousand recent studies into a fully up-to-date text.

Written for students of ecology, researchers and practitioners, the fifth edition of Ecology: From Individuals to Ecosystems is anessential reference to all aspects of ecology and addresses environmental problems of the future.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramÚtres et de cliquer sur « Résilier l'abonnement ». C'est aussi simple que cela ! Une fois que vous aurez résilié votre abonnement, il restera actif pour le reste de la période pour laquelle vous avez payé. Découvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l'application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accÚs complet à la bibliothÚque et à toutes les fonctionnalités de Perlego. Les seules différences sont les tarifs ainsi que la période d'abonnement : avec l'abonnement annuel, vous économiserez environ 30 % par rapport à 12 mois d'abonnement mensuel.
Qu'est-ce que Perlego ?
Nous sommes un service d'abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d'un seul livre par mois. Avec plus d'un million de livres sur plus de 1 000 sujets, nous avons ce qu'il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l'Ă©couter. L'outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l'accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Ecology est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Ecology par Michael Begon, Colin R. Townsend en format PDF et/ou ePUB ainsi qu'Ă  d'autres livres populaires dans Biowissenschaften et Zoologie. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley
Année
2020
ISBN
9781119279310
Sous-sujet
Zoologie
Édition
5
image

Chapter 1
Organisms in their Environments: the Evolutionary Backdrop

1.1 Introduction: natural selection and adaptation

From our definition of ecology in the Preface, and even from a layman’s understanding of the term, it is clear that at the heart of ecology lies the relationship between organisms and their environments. In this opening chapter we explain how, fundamentally, this is an evolutionary relationship. The great Russian–American biologist Theodosius Dobzhansky famously said: ‘Nothing in biology makes sense, except in the light of evolution’. This is as true of ecology as of any other aspect of biology. Thus, we try here to explain the processes by which the properties of different sorts of species make their life possible in particular environments, and also to explain their failure to live in other environments. In mapping out this evolutionary backdrop to the subject, we will also be introducing many of the questions that are taken up in detail in later chapters.
The phrase that, in everyday speech, is most commonly used to describe the match between organisms and environment is: ‘organism X is adapted to’ followed by a description of where the organism is found. Thus, we often hear that ‘fish are adapted to live in water’, or ‘cacti are adapted to live in conditions of drought’. In everyday speech, this may mean very little: simply that fish have characteristics that allow them to live in water (and perhaps exclude them from other environments) or that cacti have characteristics that allow them to live where water is scarce. The word ‘adapted’ here says nothing about how the characteristics were acquired. For an ecologist or evolutionary biologist, however, ‘X is adapted to live in Y’ means that environment Y has provided forces of natural selection that have affected the life of X’s ancestors and so have moulded and specialised the evolution of X. ‘Adaptation’ means that genetic change has occurred.
Regrettably, though, the word ‘adaptation’ implies that organisms are matched to their present environments, suggesting ‘design’ or even ‘prediction’. But organisms have not been designed for, or fitted to, the present: they have been moulded (by natural selection) by past environments. Their characteristics reflect the successes and failures of ancestors. They appear to be apt for the environments that they live in at present only because present environments tend to be similar to those of the past.
The theory of evolution by natural selection is an ecological theory. It was first elaborated by Charles Darwin (1859), though its essence was also appreciated by a contemporary and correspondent of Darwin’s, Alfred Russell Wallace (Figure 1.1). It rests on a series of propositions.
  1. The individuals that make up a population of a species are not identical: they vary, although sometimes only slightly, in size, rate of development, response to temperature, and so on.
  2. Some, at least, of this variation is heritable. In other words, the characteristics of an individual are determined to some extent by its genetic make‐up. Individuals receive their genes from their ancestors and therefore tend to share their characteristics.
  3. All populations have the potential to populate the whole earth, and they would do so if each individual survived and each individual produced its maximum number of descendants. But they do not: many individuals die prior to reproduction, and most (if not all) reproduce at a less than maximal rate.
  4. Different ancestors leave different numbers of descendants. This means much more than saying that different individuals produce different numbers of offspring. It includes also the chances of survival of offspring to reproductive age, the survival and reproduction of the progeny of these offspring, the survival and reproduction of their offspring in turn, and so on.
  5. Finally, the number of descendants that an individual leaves depends, not entirely but crucially, on the interaction between the characteristics of the individual and its environment.
Photos depict the fathers of evolution. (a) Charles Darwin and (b) Alfred Russell Wallace.
Figure 1.1 The fathers of evolution. (a) Charles Darwin. Detail from painting by John Collier 1883 (National Portrait Gallery RPG 1024). (b) Alfred Russell Wallace. Detail from photograph by Thomas Sims 1869, colourised by Paul Edwards, copyright G. W. Beccaloni.
In any environment, some individuals will tend to survive and reproduce better, and leave more descendants, than others. If, because of this, the heritable characteristics of a population change from generation to generation, then evolution by natural selection is said to have occurred. This is the sense in which nature may loosely be thought of as selecting. But nature does not select in the way that plant and animal breeders select. Breeders have a defined end in view – bigger seeds or a faster racehorse. But nature does not actively select in this way: it simply sets the scene within which the evolutionary play of differential survival and reproduction is played out.
The fittest individuals in a population are those that leave the greatest number of descendants. In practice, the term is often applied not to a single individual, but to a typical individual or a type. For example, we may say that in sand dunes, yellow‐shelled snails are fitter than brown‐shelled snails. Fitness, then, is a relative not an absolute term. The fittest individuals in a population are those that leave the greatest number of descendants relative to the number of descendants left by other individuals in the population.
When we marvel at the diversity of complex specialisations, there is a temptation to regard each case as an example of evolved perfection. But this would be wrong. The evolutionary process works on the genetic variation that is available. It follows that natural selection is unlikely to lead to the evolution of perfect, ‘maximally fit’ individuals. Rather, organisms come to match their environments by being ‘the fittest available’ or ‘the fittest yet’: they are not ‘the best imaginable’. Part of the lack of fit arises because the present properties of an organism have not all originated in an environment similar in every respect to the one in which it now lives. Over the course of its evolutionary history (its phylogeny), an organism’s remote ancestors may have evolved a set of characteristics – evolutionary ‘baggage’ – that subsequently constrain future evolution. For many mi...

Table des matiĂšres