Thermal Radiation Heat Transfer
eBook - ePub

Thermal Radiation Heat Transfer

John R. Howell, M. Pinar MengĂŒc, Kyle Daun, Robert Siegel

Partager le livre
  1. 1,006 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Thermal Radiation Heat Transfer

John R. Howell, M. Pinar MengĂŒc, Kyle Daun, Robert Siegel

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

The seventh edition of this classic text outlines the fundamental physical principles of thermal radiation, as well as analytical and numerical techniques for quantifying radiative transfer between surfaces and within participating media. The textbook includes newly expanded sections on surface properties, electromagnetic theory, scattering and absorption of particles, and near-field radiative transfer, and emphasizes the broader connections to thermodynamic principles. Sections on inverse analysis and Monte Carlo methods have been enhanced and updated to reflect current research developments, along with new material on manufacturing, renewable energy, climate change, building energy efficiency, and biomedical applications.

Features:



  • Offers full treatment of radiative transfer and radiation exchange in enclosures.


  • Covers properties of surfaces and gaseous media, and radiative transfer equation development and solutions.


  • Includes expanded coverage of inverse methods, electromagnetic theory, Monte Carlo methods, and scattering and absorption by particles.


  • Features expanded coverage of near-field radiative transfer theory and applications.


  • Discusses electromagnetic wave theory and how it is applied to thermal radiation transfer.

This textbook is ideal for Professors and students involved in first-year or advanced graduate courses/modules in Radiative Heat Transfer in engineering programs. In addition, professional engineers, scientists and researchers working in heat transfer, energy engineering, aerospace and nuclear technology will find this an invaluable professional resource.

Over 350 surface configuration factors are available online, many with online calculation capability. Online appendices provide information on related areas such as combustion, radiation in porous media, numerical methods, and biographies of important figures in the history of the field. A Solutions Manual is available for instructors adopting the text.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Thermal Radiation Heat Transfer est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Thermal Radiation Heat Transfer par John R. Howell, M. Pinar MengĂŒc, Kyle Daun, Robert Siegel en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Physical Sciences et Energy. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2020
ISBN
9781000257830
Édition
7
Sous-sujet
Energy

1 Introduction to Radiative Transfer

Wilhelm Carl Werner Otto Fritz Franz (Willy) Wien (1864–1928) studied mathematics and physics at the Universities of Göttingen and Berlin. In 1886, he completed his doctorate with a thesis on diffraction and how materials impact the color of refracted light. In 1893, he announced the Law of Displacement, which states that the product of wavelength and absolute temperature for a blackbody is constant. In 1896, he proposed a formula which described the spectral composition of radiation from an ideal body, which he called a blackbody. This work earned Wien the 1911 Nobel Prize in Physics, and later impelled Max Planck to propose quantum effects to bring Wien’s distribution into agreement with experimental measurements.
Max Planck (1858–1947) arguably laid the basis for quantum mechanics and was one of the forerunners of modern physics. He originally developed his blackbody spectral distribution based on the observation that the denominator in classically derived distributions such as that of Wien needed to be slightly smaller to fit the experimental data. His attempts to explain the theoretical basis of his proposed spectral energy equation led him to hypothesize the existance of quantized energy levels, a concept that was at odds with all of classical physics and thermodynamics. He was forced to accept Boltzmann’s statistial interpretation of the Second Law of Thermodynamics, as opposed to the more classical deterministic view.
Energy radiates from all types of matter under all conditions and at all times. The emission of thermal radiation arises from random fluctuations in the quantized internal energy states of the emitting matter. Temperature is a measure of the internal energy level of matter, and the nature of the fluctuations can be related to an object’s temperature. Once the energy is radiated, it propagates as an electromagnetic (EM) wave. If the waves encounter matter, they may partially lose their energy and increase the internal energy of the receiving matter. This is called absorption. The amount of emitted and absorbed radiation are functions of the physical and chemical properties of the material as well as its internal energy level, as quantified by its temperature.
An EM wave can also undergo scattering as it propagates through a heterogeneous medium, e.g., a porous ceramic, a layer of freshly fallen snow or even the molecules in a gas. As waves encounter these scattering centers, they are reflected, refracted, or diffracted, or any combination of these phenomena, which redirects the wave without increasing the internal energy of the scatterer. The propagation and scattering of EM waves, including all effects of reflection, refraction, transmission, polarization and coherence, are governed by the Maxwell equations, as we discuss in Chapters 8, 10, and 16.
Since all matter emits and absorbs radiation under all conditions, there is always radiative transfer of energy, even within an isothermal system. If two objects are at different temperatures, there will be net radiation energy transfer between them, even if there is no matter between the objects. An obvious example is radiation emitted by the sun, which travels through the vacuum of space and is partially absorbed and scattered upon entering the earth’s atmosphere. A significant part of this radiation reaches the earth’s surface, where again, some is absorbed and some is reflected (Figure 1.1). These three distinct physical mechanisms – emission, absorption, and scattering – are all spectral in nature; that is, they all depend on the wavelength or frequency of the EM wave. Global warming, for example, is driven by spectral variations in the radiation emitted by the sun, the radiation emitted by the earth, and the fact that the atmosphere absorbs and scat...

Table des matiĂšres