Organic Electronics for Electrochromic Materials and Devices
eBook - ePub

Organic Electronics for Electrochromic Materials and Devices

Hong Meng

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Organic Electronics for Electrochromic Materials and Devices

Hong Meng

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Organic Electronics for Electrochromic Materials and Devices

Explore this comprehensive overview of organic electrochromic materials and devices from a leading voice in the industry

Organic Electronics for Electrochromic Materials and Devices delivers a complete discussion of the major and key topics related to the phenomenon of electrochromism. The text covers the history of organic electrochromism, its fundamental principles, different types of electrochromic materials, the development of device structures and multi-function devices, characterizations of device performance, modern applications of electrochromic devices, and prospects for future electrochromic devices.

The distinguished author places a strong focus on recent research results from universities and private firms from around the world and addresses the issues and challenges faced by those who apply organic electrochromic technology in the real world. With these devices quickly becoming the go-to display technology in the field of electronic information, this resource will quickly become indispensable to all who work or study in the field of optics.

Readers will also benefit from the inclusion of:

  • A thorough introduction to organic electrochromism, including its history and the mechanisms of electrochromic devices
  • An exploration of polymer electrolytes for electrochromic applications, including their requirements and types
  • A discussion of electrochromic small molecules, including the development of technology in viologen materials, fluoran and fluorescein dyes, violene-cyanine hybrids, triarylamine molecules and liquid crystal electrochromic materials.
  • A perspective analysis of the redox-active conjugated polymers and triarylamine based non-conjugated polymers applied in electrochromic devices
  • A treatment of Prussian blue and metallohexacyanates, including their backgrounds, technology development, crystal structures, synthesis, nanocomposites, and assembled electrochromic devices

Perfect for materials scientists, polymer chemists, organic chemists, physical chemists, and inorganic chemists, Organic Electronics for Electrochromic Materials and Devices will also earn a place in the libraries of physicists and those who work in the optical industry who seek a one-stop reference that covers all aspects of organic electrochromic materials.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Organic Electronics for Electrochromic Materials and Devices est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Organic Electronics for Electrochromic Materials and Devices par Hong Meng en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Civil Engineering. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley-VCH
Année
2021
ISBN
9783527830626

1
Introduction

1.1 General Introduction

Electrochromism is the phenomenon that describes the optical (absorbance/transmittance/reflectance) change in material via a redox process induced by an external voltage or current [1]. Usually the electrochromic (EC) materials exhibit color change between a colored state and colorless state or between two colors, even multicolor. In nature, its origin is from the change of occupation number of material's internal electronic states. As the core of EC technology, the EC materials have built up many categories during decades of development, for example, according to the coloration type, it could be classified as anodically coloring materials (coloration upon oxidation) or cathodically coloring materials (coloration upon reduction) [2]. Based on the light absorption region in the solar radiation, which consists of these three parts: ultraviolet (UV), visible (Vis), and near‐infrared radiation (NIR) lights (Figure 1.1), it could be divided into visible EC materials (wavelength: 380–780 nm), which can be seen by the human eye and therefore are suitable for smart window and indicator applications, and NIR EC materials (wavelength: 780–2500 nm), which have great potential for thermal regulation technologies and even in national defense‐related applications [3]. And on the basis of materials species, there are mainly inorganic, organic, and hybrid EC materials [4, 5] (https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg). Inorganic EC materials are transition metal oxides (TMOs) (WO3, NiO, TiO2, and Prussian Blue [PB]), organic EC materials including small molecules (e.g. viologen), conjugated polymers (e.g. poly(pyrrole), poly(thiophene), and poly(carbazole)) and aromatic polymers (e.g. polyimides [PIs] and polyamides [PAs]), organic–inorganic hybrid materials referring to metallo‐supermolecular polymers, and metal–organic framework (MOF). Among them, inorganic materials exhibit excellent long‐term stability compared with organic ones; however, considering the structure variety, flexibility, and low‐cost solution processability, organic EC materials are superior to inorganic materials. The organic–inorganic hybrid materials are designed to combine advantages of both organic and inorganic materials.
Graph depicts the solar irradiance spectrum above atmosphere and at the surface of the Earth.
Figure 1.1 Solar irradiance spectrum above atmosphere and at the surface of the Earth.
Source: Nick84: https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg, Licensed under CC BY‐SA 3.0.
EC materials exhibit color changes during the redox process; therefore the electrochromic devices (ECDs) generally consist of three elements: electrodes, EC materials, and electrolyte solution. The electrodes offer a constant supply of electric current, and ions are conducted by the electrolyte solution. Then the EC materials undergo electrochemical oxidation and/or reduction, which results in changes in the optical bandgap and colors. As shown in Figure 1.2, a typical ECD has five layers: two transparent conducting oxide (TCO) layers, EC layer, ion‐conducting layer (electrolyte solution), ion storage layer. Particularly, the ion storage layer acts as the “counter electrode” to store ions and keep electric charge balance. And according to the exact state of EC materials, there are three types of ECD: film type (I), solution type (II), and hybrid type (III). The Type I ECD is the most common; many kinds of EC materials are suitable for this type including TMOs, conjugated/non‐conjugated polymers, metallo‐supermolecular polymers, and MOF/covalent organic framework (COF) materials, which using spin‐coating, spray‐coating, and dip‐coating processes to form uniform films; these films won't dissolute in electrolyte solutions. Type II ECD requires that the EC materials have good solubility in electrolyte solutions. Therefore many organic small molecules such as viologen, terephthalate derivatives, and isophthalate derivatives are appropriate for this type of device. Meanwhile the fabrication method for this type of device is the most simple one. It just needs to dissolve the electrolyte and EC material in a specific solvent and inject into the prepared conducting cell. Type III ECD uses film‐type EC materials as working electrode and solution‐type EC materials as ion storage layer.
Schematic illustration of the scheme of three types of electrochromic devices.
Figure 1.2 The scheme of three types of electrochromic devices.

1.2 The History of Electrochromic Materials

The word “electrochromism” was invented by John R. Platt in 1960 [6], in analogy to “thermochromism” and “photochromism.” However, the EC phenomenon could be traced to the nineteenth century, as early as 1815. Berzelius observed the color change of pure tungsten trioxide (WO3) during the reduction when warmed under a flow of dry hydrogen gas. Then from 1913 to 1957, some patents described the earliest form of ECD based on WO3 [7, 8]. Therefore the ori...

Table des matiĂšres