Finite Elements in Civil Engineering Applications
eBook - ePub

Finite Elements in Civil Engineering Applications

Proceedings of the Third Diana World Conference, Tokyo, Japan, 9-11 October 2002

Max.A.N. Hendriks, J.A. Rots, Max.A.N. Hendriks, J.A. Rots

Partager le livre
  1. 560 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Finite Elements in Civil Engineering Applications

Proceedings of the Third Diana World Conference, Tokyo, Japan, 9-11 October 2002

Max.A.N. Hendriks, J.A. Rots, Max.A.N. Hendriks, J.A. Rots

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

These proceedings present high-level research in structural engineering, concrete mechanics and quasi-brittle materials, including the prime concern of durability requirements and earthquake resistance of structures.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Finite Elements in Civil Engineering Applications est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Finite Elements in Civil Engineering Applications par Max.A.N. Hendriks, J.A. Rots, Max.A.N. Hendriks, J.A. Rots en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Civil Engineering. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
CRC Press
Année
2021
ISBN
9781000446784

Reinforced concrete structures

Invited paper: Modal analysis versus time history analysis – concepts for the seismic design

Th. Baumann & J. Böhler
WALTER/DYWIDAG, Central Technics, Munich, Germany
ABSTRACT: The forces induced into a structure by earthquake ground motions are prescribed traditionally by elastic response spectra. They can be reduced by behaviour factors to account for the possibility of energy dissipation due to plastic deformations. Presupposition for the utilization of this favourable effect is a sufficient ductility. The consistent definition and verification of this ductility is an essential part of the structural design for earthquakes. In the present paper, the principal features of this task are discussed. In order not to persist in general terms, the governing effects are quantified within a case study of a 3-storey steel frame with composite beams, considering the following steps: Modal analysis, application of behaviour factors, usual assumptions for the required plastic deformations, push over-analysis with plastic rotation of hinges, connection of modal analysis and push over-analysis, nonlinear time history-analysis. Only the last step creates the basis for a reliable assessment of the relevant deformations of the plastifying frame, depending on the applied accelerogram and its peak value PGA.

1 BEHAVIOUR FACTOR, DUCTILITY AND MODAL ANALYSIS

The maximum seismic force of an elastic structure (Fel) is proportional to the peak value (PGA) of the ground acceleration a0(t). The force which causes yielding of the structure is denominated Fy, the corresponding deformation Δy and the acceleration (PGA)y. If the structure has a sufficient ductility allowing plastic deformations, it may sustain also stronger earthquakes. In Eurocode 8 (2001) and other codes this fact is taken into account by a behaviour factor q, which describes the possible increase of PGA up to q·(PGA)y. This increase requires plastic deformations ΌΔ ‱ Δy. For the definition of ΌΔ alternative assumptions have been proposed acc. to fig. 1 (Paulay et al. 1990): a) “same displacement” like an elastic structure with the same stiffness, and b) “same work”. As pointed out already by Baumann & Böhler (1997), these assumptions are questionable. Especially the “same work”–formula has no rational base, because the areas shadowed in fig. 1 do not designate “works” or energies at all, which are characteristic for the different behaviour of elastic and non-elastic structures.
On the other hand, the realistic valuation of the plastic deformations dependent on the value of PGA is an essential part of the seismic design. The following report shows, how the informations which are necessary in this respect can be found by various types of analyses, i.e. modal analysis (response spectrum analysis), push over-analysis and time history-analysis. In order not to remain in general terms, a steel frame with composite beams excited horizontally by earthquake is considered within a case study.
Image
Figure 1. Plastic deformations as presupposition for the application of behaviour factors.
In areas with low seismicity, bracing of frames by diagonal rods acc. to fig. 2 is an economic solution (MGS 2001). However, this type of structure is not able to sustain plastic deformations and horizontal forces in reverse directions. Therefore a moment-resisting frame acc. to figs. 3 and 4 has been investigated. The frame distance of about 5 m is bridged by a concrete slab which is connected to the rolled steel girders by studs. In this way the stiffness of the composite beams is increased by the factor 3.5 compared to the steel girders only. The formation of plastic hinges adjacent to the columns is supported by omission of bond in this region.
Fig. 5 shows the first two eigenmodes for horizontal excitation. For TE=0.437 s (mode 1), the response spectrum of fig. 6 (acc. to Eurocode 8 (2001) for Soil B/Type 1) defines an elastic response value of 2.5 for a viscous damping of Ο=5%. For the lower damping of a steel or composite structure (Ο=2%) this response is increased acc. EC 8 by the factor η=1.2. For an assumed value of PGA=0.12 g and a total weight of the structure of about 3⋅35⋅15=1575 kN we get a total lateral force H=0.12⋅2.5⋅1.2⋅1575=567 kN. From a more detailed modal analysis considering 10 horizontal modes results only H=500 kN.
Image
Figure 2. Bracing of steel frame with composite beams by diagonal rods.
Image
Figure 3. Moment resisting frame with composite beams.
For time history-analyses we need natural or artificially generated accelerograms. Fig. 7 shows the two accelerograms, which have been applied for this case study. They are based on PGA=k⋅S⋅ag=1.0⋅1.2⋅0.10 g=0.12g. The value S=1...

Table des matiĂšres