Modélisation des phases solides
À propos de ce livre
La sérieThermodynamique chimique approfondieprésente l'ensemble des thèmes de la thermodynamique utiles à la chimie, aux matériaux, à l'électrochimie, aux phénomènes de surface et au génie des procédés.En modélisation des phases solides, les modèles des oscillateurs d'Einstein et de Debye permettent de calculer des fonctions de partition et de mesurer la capacité calorifique et la dilatation thermique des quatre types de solides purs: les atomiques, les ioniques, les moléculaires et les métalliques.Les notions d'ordre et de désordre à courte et longue distances sont également décrites, la transformation des alliages est analysée en utilisant la méthode quasi-chimique. Cette procédure a été retenue pour l'étude des défauts ponctuels et de la nonstoechiométrie des solides. Les conséquences de ces propriétés sont examinées tant sur les solides purs que sur des solutions solides.
Foire aux questions
- Essentiel est idéal pour les apprenants et professionnels qui aiment explorer un large éventail de sujets. Accédez à la Bibliothèque Essentielle avec plus de 800 000 titres fiables et best-sellers en business, développement personnel et sciences humaines. Comprend un temps de lecture illimité et une voix standard pour la fonction Écouter.
- Intégral: Parfait pour les apprenants avancés et les chercheurs qui ont besoin d’un accès complet et sans restriction. Débloquez plus de 1,4 million de livres dans des centaines de sujets, y compris des titres académiques et spécialisés. Le forfait Intégral inclut également des fonctionnalités avancées comme la fonctionnalité Écouter Premium et Research Assistant.
Veuillez noter que nous ne pouvons pas prendre en charge les appareils fonctionnant sous iOS 13 ou Android 7 ou versions antérieures. En savoir plus sur l’utilisation de l’application.
Informations
Table des matières
- Table des matières
- Avant-propos
- 1 Les solides purs cristallisés
- 2 Les solutions solides
- 3 Non-stoechiométrie dans les solides
- 4 Solutions solides et éléments de structure
- Annexe A.1: La méthode des multiplicateurs de Lagrange
- Annexe A.2: Résolution de l’équation de Schrödinger
- Notations et symboles
- Bibliographie
- Index
