Algèbre locale
À propos de ce livre
L'algèbre locale est la partie de l'algèbre commutative qui, au départ, traduit en termes d'anneaux les propriétés locales des variétés algébriques et analytiques. Elle s'intéresse donc aux anneaux de germes de fonctions au voisinage d'un point de celles-ci, puis, plus généralement, dans les anneaux dits locaux, à des notions géométriques fondamentales comme la dimension, la multiplicité et le point simple. Elle traite aussi de la validité de résultats importants, que l'on peut lire sur ces anneaux, tels le théorème de la fonction implicite, ceux liés au passage de l'algébrique à l'analytique, déjà utilisé au début du siècle dernier dans l'étude locale des courbes algébriques planes. Ce livre rassemble en un seul volume les notions fondamentales de la théorie sans pour autant négliger les motivations historiques de certaines définitions et propriétés. Ce livre fait suite aux deux ouvrages de Jean-Pierre Lafon publiés chez le même éditeur, Algèbre commutative. Langages géométrique et algébrique et Les formalismes fondamentaux de l'algèbre commutative.
Foire aux questions
- Essentiel est idéal pour les étudiants et les professionnels qui aiment explorer un large éventail de sujets. Accédez à la bibliothèque Essentiel comprenant plus de 800 000 titres de référence et best-sellers dans les domaines du commerce, du développement personnel et des sciences humaines. Il comprend un temps de lecture illimité et la voix standard de la fonction Écouter.
- Complet est parfait pour les étudiants avancés et les chercheurs qui ont besoin d'un accès complet et illimité. Accédez à plus de 1,4 million de livres sur des centaines de sujets, y compris des titres académiques et spécialisés. L'abonnement Complet comprend également des fonctionnalités avancées telles que la fonction Écouter Premium et l'Assistant de recherche.
Veuillez noter que nous ne pouvons pas prendre en charge les appareils fonctionnant sur iOS 13 et Android 7 ou versions antérieures. En savoir plus sur l'utilisation de l'application.
