Data Science Fundamentals with R, Python, and Open Data
eBook - PDF

Data Science Fundamentals with R, Python, and Open Data

Marco Cremonini

  1. English
  2. PDF
  3. Disponible sur iOS et Android
eBook - PDF

Data Science Fundamentals with R, Python, and Open Data

Marco Cremonini

DĂ©tails du livre
Table des matiĂšres
Citations

À propos de ce livre

Data Science Fundamentals with R, Python, and Open Data

Introduction to essential concepts and techniques of the fundamentals of R and Python needed to start data science projects

Organized with a strong focus on open data, Data Science Fundamentals with R, Python, and Open Data discusses concepts, techniques, tools, and first steps to carry out data science projects, with a focus on Python and RStudio, reflecting a clear industry trend emerging towards the integration of the two. The text examines intricacies and inconsistencies often found in real data, explaining how to recognize them and guiding readers through possible solutions, and enables readers to handle real data confidently and apply transformations to reorganize, indexing, aggregate, and elaborate.

This book is full of reader interactivity, with a companion website hosting supplementary material including datasets used in the examples and complete running code (R scripts and Jupyter notebooks) of all examples. Exam-style questions are implemented and multiple choice questions to support the readers' active learning. Each chapter presents one or more case studies.

Written by a highly qualified academic, Data Science Fundamentals with R, Python, and Open Data discuss sample topics such as:

  • Data organization and operations on data frames, covering reading CSV dataset and common errors, and slicing, creating, and deleting columns in R
  • Logical conditions and row selection, covering selection of rows with logical condition and operations on dates, strings, and missing values
  • Pivoting operations and wide form-long form transformations, indexing by groups with multiple variables, and indexing by group and aggregations
  • Conditional statements and iterations, multicolumn functions and operations, data frame joins, and handling data in list/dictionary format

Data Science Fundamentals with R, Python, and Open Data is a highly accessible learning resource for students from heterogeneous disciplines where Data Science and quantitative, computational methods are gaining popularity, along with hard sciences not closely related to computer science, and medical fields using stochastic and quantitative models.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Data Science Fundamentals with R, Python, and Open Data est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Data Science Fundamentals with R, Python, and Open Data par Marco Cremonini en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Informatique et Extraction de donnĂ©es. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley
Année
2024
ISBN
9781394213252
Édition
1

Table des matiĂšres

  1. Cover
  2. Title Page
  3. Copyright
  4. Contents
  5. Preface
  6. About the Companion Website
  7. Introduction
  8. Chapter 1 Open‐Source Tools for Data Science
  9. Chapter 2 Simple Exploratory Data Analysis
  10. Chapter 3 Data Organization and First Data Frame Operations
  11. Chapter 4 Subsetting with Logical Conditions
  12. Chapter 5 Operations on Dates, Strings, and Missing Values
  13. Chapter 6 Pivoting and Wide‐long Transformations
  14. Chapter 7 Groups and Operations on Groups
  15. Chapter 8 Conditions and Iterations
  16. Chapter 9 Functions and Multicolumn Operations
  17. Chapter 10 Join Data Frames
  18. Chapter 11 List/Dictionary Data Format
  19. Index
  20. EULA