R Deep Learning Projects
eBook - ePub

R Deep Learning Projects

Yuxi (Hayden) Liu, Pablo Maldonado

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

R Deep Learning Projects

Yuxi (Hayden) Liu, Pablo Maldonado

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

5 real-world projects to help you master deep learning concepts

Key Features

  • Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more
  • Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
  • Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practices

Book Description

R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains.

This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects.

By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting.

What you will learn

  • Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec
  • Apply neural networks to perform handwritten digit recognition using MXNet
  • Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification -Implement credit card fraud detection with Autoencoders
  • Master reconstructing images using variational autoencoders
  • Wade through sentiment analysis from movie reviews
  • Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks
  • Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction

Who this book is for

Machine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que R Deep Learning Projects est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  R Deep Learning Projects par Yuxi (Hayden) Liu, Pablo Maldonado en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Ciencia de la computaciĂłn et Ciencias computacionales general. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2018
ISBN
9781788474559

Text Generation Using Recurrent Neural Networks

In this chapter, we will describe some of the most exciting techniques in modern (at the time of writing—late 2017) machine learning, recurrent neural networks. They are, however, not new; they have been around since the 1980s, but they have become popular due to the numerous records in language-related tasks in recent years.
Why do we need a different type of architecture for text? Consider the following example:
"I live in Prague since 2015"
and
"Since 2015 I live in Prague"
If we would like to teach a traditional feed-forward network such as a perceptron or a multi-layer perceptron to identify the date I moved to Prague, then this network would have to learn separate parameters for each input feature, which in particular implies that it would have to learn grammar to answer this simple question! This is undesirable in many applications. Similar issues motivated machine learning researchers and statisticians in the 1980s to introduce the idea of sharing parameters across different parts of the model. This idea is the secret sauce of recurrent neural networks, our next deep learning architecture.
By design, recurrent neural networks are well-suited for processing sequential data. In general, machine learning applied to sequential data can be roughly divided into four main areas:
  • Sequence prediction: Given
    , predict the next element of the sequence,
  • Sequence classification: Given
    , predict a category or label for it
  • Sequence generation: Given
    , generate a new element of the sequence,
  • Sequence to sequence prediction: Given
    , generate an equivalent sequence,
Applications of sequence prediction include weather forecasting and stock market prediction. For classification, we can think, for example, of sentiment analysis and document classification. Automatic image captioning or text generation are part of the sequence generation family of problems, whereas machine translation might be the most familiar example of sequence to sequence prediction we see in our everyday lives.
Our focus for this chapter is on applications of recurrent neural networks for text generation. Since, as we saw previously, text generation is part of a much larger set of problems, many of our algorithms are portable to other contexts.
Training deep learning models is often time-consuming, and recurrent neural networks are not the exception. Our focus is on the ideas over the data, which we will illustrate with smaller datasets than those that you might encounter later on in the wild. This is for the purpose of clarity: We want to make it easier for you to get started on any standard laptop. Once you grasp the basics, you can spin off your own cluster in your favorite cloud provider.

What is so exciting about recurrent neural networks?

Coming from a mathematics background, in my rather hectic career I have seen many different trends, particularly during the last few years, which all sound very similar to me: "you have a problem? wavelets can save you!", "finite elements are the solution to everything", and similar over-enthusiastic claims.
Of course, each tool has its time and place and, more importantly, an application domain where it excels. I find recurrent neural networks quite interesting for the many features they can achieve:
  • Produce consistent markup text (opening and closing tags, recognizing timestamp-like data)
  • Write Wikipedia articles with references, and create URLs from non-existing addresses, by learning what a URL should look like
  • Create credible-looking scientific papers from LaTeX
All these amazing features are possible without the network having any context information or metadata. In particular, without knowing English, nor what a URL or a bit of LaTeX syntax looks like.
These and even more interesting capabilities of neural networks are superbly described by Andrej Karpathy in The Unreasonable Effectiveness of Recurrent Neural Networks: http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
What makes recurrent neural networks exciting? Instead of a constrained fixed-input size to fixed-output size, we can operate over sequences of vectors instead.
A limitation of many machine learning algorithms, including standard feed-forward neural networks, is that they accept a fixed size vector as input and produce a fixed size vector as output. For instance, if we want to classify text, we receive a corpus of documents from which we create a vocabulary to vectorize each document and the output is a vector with class probabilities. Recurrent neural networks instead allow us to take sequences of vectors as input. So, from a one-to-one correspondence between fixed input size and fixed output size, we have a much richer landscape, one-to-one, one-to-many, many-to-one, many-to-many.
Why is that desirable? Let's look at a few examples:
  • One-to-one: Supervised learning, for instance, text classification
  • One-to-many: Given an input text, generate a summary (a sequence of words with important information)
  • Many-to-one: Sentiment analysis in text
  • Many-to-many: Machine translation
Moreover, as recurrent neural networks maintain an internal state which gets updated according to new information, we can view RNNs as a description of a program. In fact, a paper by Siegelman in 1995 shows that recurrent neural networks are Turing complete, they can simulate arbitrary programs.

But what is a recurrent neural network, really?

How does the network keep track of the previous states? To put it in the context of text generation, think of our training data as a list of character sequences (tokenized words). For each word, from the first character, we will predict the following:
Formally, let's denote a sequen...

Table des matiĂšres