Groups of Prime Power Order. Volume 4
eBook - ePub

Groups of Prime Power Order. Volume 4

Yakov G. Berkovich, Zvonimir Janko

Partager le livre
  1. 475 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Groups of Prime Power Order. Volume 4

Yakov G. Berkovich, Zvonimir Janko

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

This is the fourth volume of a comprehensive and elementary treatment of finite p-group theory. As in the previous volumes, minimal nonabelian p- groups play an important role. Topics covered in this volume include:

  • subgroup structure of metacyclic p- groups
  • Ishikawa's theorem on p- groups with two sizes of conjugate classes
  • p- central p- groups
  • theorem of Kegel on nilpotence of H p -groups
  • partitions of p- groups
  • characterizations of Dedekindian groups
  • norm of p- groups
  • p- groups with 2-uniserial subgroups of small order

The book also contains hundreds of original exercises and solutions and a comprehensive list of more than 500 open problems. This work is suitable for researchers and graduate students with a modest background in algebra.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Groups of Prime Power Order. Volume 4 est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Groups of Prime Power Order. Volume 4 par Yakov G. Berkovich, Zvonimir Janko en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Mathematics et Group Theory. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
De Gruyter
Année
2015
ISBN
9783110381559
Édition
1
Sous-sujet
Group Theory

§ 159 2-groups all of whose cyclic subgroups A, B with A η B = {1} generate an abelian subgroup

This and the following section were written by the second author. These sections contain the solution to Problem 2916.
Heng Lv, Wei Zhou and Dapeng Yu (see [LZY]) have been studying p-groups G all of whose cyclic subgroups are of index at most p2 in their normal closure in G. The main obstacle in these investigations has been two-generator subgroups {x, y} (x, y e G) such that 〈xâŒȘ η 〈yâŒȘ = {1} (see Lemma 144.4 and Lemma 144.5).
On the other hand, if G is a noncyclic p-group such that any two distinct maximal cyclic subgroups of G have intersection equal {1}, then we have either exp(G)= p or G = D2n, n > 3 (see Exercise 12 in Appendix 45). In fact, it is easy to prove this statement. Assume that exp(G) > p and let L G be a maximal cyclic subgroup of order > p. Let L M G with |M : L|= p. By Theorem 1.2, we get p = 2 and M is dihedral. Thus, all subgroups of G containing L and having order 2|L| are dihedral. Suppose that M G. Then N = NG(M) > M and N normalizes L. Let L0 be the cyclic subgroup of order 4 in L so that C = CN(L0) covers N/M, which gives C > L.Let K/L be a subgroup of order 2 in C/L. But then K is not dihedral, a contradiction. Hence we have M = G = D2n, n > 3, and we are done.
Therefore, it is of interest to classify p-groups G such that the following condition is satisfied:
image
In the first two Propositions 159.1 and 159.2 are determined p-groups G satisfying the condition (*), where G is either minimal nonabelian or metacyclic and p is any prime. It is clear that the condition (* ) says nothing in the case of p-groups of exponent p. But also in the case of 2-groups of exponent 4, the condition (*) says very little, and we characterize such groups in Theorem 159.3.
We recall that a p-group G is p-central if either p > 2 and Ω1 ( G) Z( G) or p = 2 and Ω2 ( G) Z( G). Also, we recall that a 2-group G is quasidihedral if it has an abelian maximal subgroup A of exponent > 2 and an involution t e G - A, which inverts each element in A.
In what follows G will be a 2-group of exponent > 4 satisfying the condition (*) .In Theorem 159.4 we determine up to isomorphism all such groups G which do not possess a normal elementary abelian subgroup of order 8. In Theorem 159.5 we classify our groups G with the assumption that Ü1(G) Z(G). It turns out that these groups must be 2-central, i.e., we must also have 02(G) Z(G). In Proposition 159.6 it is shown that if 02(G) is abelian, then G is also 2-central. Modular 2-groups (i.e., 2-groups that are D8-free) are classified in Theorem 159.7. Then we consider 2-groups G which do not have D8 as a subgroup or equivalently in which Ü1(G) is elementary abelian but 01(G) Z(G), and we show that such groups are of exponent 4 (Theorem 159.8). Finally, we classify in Theorem 159.9 our groups G in which Ü1(G) is nonabelian (i.e., D8 is a subgroup in G). The sta...

Table des matiĂšres