Tanning Chemistry
eBook - ePub

Tanning Chemistry

The Science of Leather

Anthony D Covington, Michael Redwood, Wolfgang Hummel, Jonathan Cooke

Partager le livre
  1. 520 pages
  2. English
  3. ePUB (adapté aux mobiles)
  4. Disponible sur iOS et Android
eBook - ePub

Tanning Chemistry

The Science of Leather

Anthony D Covington, Michael Redwood, Wolfgang Hummel, Jonathan Cooke

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Even in the 21st Century, the manufacture of leather retains an air of the dark arts, still somewhat shrouded in the mysteries of a millennia old, craft based industry. Despite the best efforts of a few scientists over the last century or so, much of the understanding of the principles of tanning is still based on received wisdom and experience. Leather is made from (usually) the hides and skins of animals - large animals such as cattle have hides, small animals such as sheep have skins. The skin of any animal is largely composed of the protein collagen, so it is the chemistry of this fibrous protein and the properties it confers to the skin with which the tanner is most concerned. In addition, other components of the skin impact on processing, impact on the chemistry of the material and impact on the properties of the product, leather. Therefore, it is useful to understand the relationships between skin structure at the molecular and macro levels, the changes imposed by modifying the chemistry of the material and the eventual properties of the leather. This book aims to contribute to changing the thinking in the industry, to continue building a body of scientific understanding, aimed at enhancing the sustainability of an industry which produces a unique group of materials, derived from a natural source. The Science of Leather is the only current text on tanning science, and addresses the scientific principles which underpin the processes involved in making leather. It is concerned with the chemical modification of collagen, prior to tanning and the tanning reactions in particular. The subject is covered in the following order: collagen chemistry, collagen structure, skin structure, processing to prepare for tanning, the tanning processes and processing after tanning. The aim of the book is to provide leather scientists and technologists with an understanding of how the reactions work, the nature of their outcomes and how the processes can be controlled and changed. The objective is to synthesise a scientific view of leather making and to arrive at an understanding of the nature of tanning - how the wide range of chemistries employed in the art can change the properties of collagen, making leather with different properties, especially conferring different degrees of stabilisation as measured by the hydrothermal stability. Environmental issues are not treated as a separate theme - the impact of leather making on the environment is a thread running through the text, with the assumption that better understanding of the science of leather making will lead to improved processing. The book also reflects on the ways leather technology may develop in the future based on the foundation of understanding the scientific principles which can be exploited. It also includes a subject index, references and a glossary. The book provides the reader with insights into the role science plays in leather technology and provides fundamental understanding, which should be the basis for scientific and technological research and development for the benefit of the global leather industry. The book is aimed at students, leather scientists and technologists, in both academia and industry, in leather production and in chemical supply houses.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Tanning Chemistry est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Tanning Chemistry par Anthony D Covington, Michael Redwood, Wolfgang Hummel, Jonathan Cooke en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans Technology & Engineering et Industrial Engineering. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Année
2015
ISBN
9781782626022
CHAPTER 1
Collagen and Skin Structure

1.1 INTRODUCTION

At the heart of the leather making process is the raw material, hides and skins. As the largest organ of the body of mammals, the skin is a complex structure, providing protection against the environment and affording temperature control, but it is also strong enough to retain, for example, the insides of a one tonne cow. Skin is primarily composed of the protein collagen and it is the properties and potential for chemical modification of this protein that offer the tanner the opportunity to make a desirable product from an unappealing starting material. It is part of the tanner’s job and skill to simplify or purify this starting material, allowing it to be converted into a product that is both desirable and useful in modern life.
Collagen is a generic name for a family of at least 28 distinct collagen types, each serving different functions in animals, importantly as connective tissues.1–4 The major component of skin is type I collagen: so, unless otherwise specified, the term ‘collagen’ will always refer to type I collagen. Other collagens do feature in leather making and their roles are defined later.
Collagens are proteins, i.e. they are made up of amino acids. They can be separated into α-amino acids and ÎČ-amino acids (Figure 1.1). Each one features a terminal amino group and a terminal carboxyl group, which become involved in the peptide link (see below), and a sidechain attached to the methylene group in the centre of the molecule. When the amino acids are linked together to form proteins, they create an axis or ‘backbone’ to the polymer, from which the sidechains extend. It is the content and distribution of the sidechains that determine most of the properties of any protein. In the case of collagen, it is the sidechains that largely define its reactivity and its ability to be modified by the stabilising reactions of tanning, when leather is made. In addition, the chemistry of the backbone, defined by the peptide links, offers different reaction sites that can be exploited in some tanning processes.
image
Figure 1.1 Amino acid structures.
All the common amino acids are found in skin or skin components. There are two notable aspects of the amino acid content of collagen. Hydroxyproline (Figure 1.1) is almost uniquely present in collagen compared to other proteins and, therefore, offers the basis of measuring the collagen content in any skin or skin derivative. Tryptophan (Figure 1.2) is absent, therefore making collagen deficient as a foodstuff.
image
Figure 1.2 Tryptophan.
In terms of leather making, some amino acids are more important than others, since they play defined roles (Table 1.1): the roles of importance are either in creating the fibrous structure or involvement in the processing reactions for protein modification. Other amino acids, not included in Table 1.1, are important in defining the properties of the collagen, but play less defined roles in the leather making processes.
Table 1.1 Amino acids of importance to leather making.
Name Symbol Type Sidechain (R) Importance in leather making
Glycine Gly α, neutral –H Collagen structure
Alanine Ala α, neutral –CH3 Hydrophobic bonding
Valine Val α, neutral –CH(CH3)2 Hydrophobic bonding
Leucine Leu α, neutral –CH2CH(CH3)2 Hydrophobic bonding
Isoleucine Ileu α, neutral CH3CH2CH(CH3) Hydrophobic bonding
Phenyl-Alanine Phe α, neutral –CH2C6H5 Hydrophobic bonding
Serine Ser α, neutral –CH2OH Unhairing
Cysteine CySH α, neutral, S containing –CH2SH Unhairing
Cystine CyS-SCy α, neutral, S containing –CH2SSCH2– Unhairing
Aspartic Acid Asp α, acidic –CH2CO2H Isoelectric point (IEP), a mineral tanning
Asparagine Asn α, neutral –CH2CONH2 IEP
Glutamic Acid Glu α, acidic –(CH2)2CO2H IEP, mineral tanning
Glutamine Gln α, neutral –(CH2)2CONH2 IEP
Arginine Arg α, basic –(CH2)3NHC(NH)NH2 IEP
Lysine Lys α, basic –(CH2)4NH2 IEP, aldehydic tanning, dyeing, lubrication
Histidine His α, basic
inline
Aldehydic tanning, dyeing, lubrication
Proline Pro ÎČ, neutral See Figure 1.1 Collagen structure
Hydroxyproline Hypro ÎČ, neutral See Figure 1.1 Collagen structure, hydrogen bonding
aIn biology, referred to as pI.
Amino acids create macromolecules, proteins such as collagen, by reacting via a condensation process: the amide or peptide link is in bold:
display
The condensation reaction can be reversed by hydrolysis, by adding the elements of water. Clearly, hydrolysis as set out in this chemical equation cannot be fast, nor does the equilibrium lie to the left, otherwise the protein would be unstable and useless as the basis of life. In contrast, the hydrolysis reaction is catalysed by general acid and general base – importantly for leather making, it is catalysed by H+ and OH−. The impact on processing can be indicated as follows.
In the earliest stage of processing, hair is usually rem...

Table des matiĂšres