Photovoltaic Solar Energy
eBook - ePub

Photovoltaic Solar Energy

From Fundamentals to Applications

AngĂšle Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich

Partager le livre
  1. English
  2. ePUB (adapté aux mobiles)
  3. Disponible sur iOS et Android
eBook - ePub

Photovoltaic Solar Energy

From Fundamentals to Applications

AngĂšle Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich

DĂ©tails du livre
Aperçu du livre
Table des matiĂšres
Citations

À propos de ce livre

Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date account of existing PV technologies in conjunction with an assessment of technological developments.

Key features:

  • Written by leading specialists active in concurrent developments in material sciences, solar cell research and application-driven R&D.
  • Provides a basic knowledge base in light, photons and solar irradiance and basic functional principles of PV.
  • Covers characterization techniques, economics and applications of PV such as silicon, thin-film and hybrid solar cells.
  • Presents a compendium of PV technologies including: crystalline silicon technologies; chalcogenide thin film solar cells; thin-film silicon based PV technologies; organic PV and III-Vs; PV concentrator technologies; space technologies and economics, life-cycle and user aspects of PV technologies.
  • Each chapter presents basic principles and formulas as well as major technological developments in a contemporary context with a look at future developments in this rapidly changing field of science and engineering.

Ideal for industrial engineers and scientists beginning careers in PV as well as graduate students undertaking PV research and high-level undergraduate students.

Foire aux questions

Comment puis-je résilier mon abonnement ?
Il vous suffit de vous rendre dans la section compte dans paramĂštres et de cliquer sur « RĂ©silier l’abonnement ». C’est aussi simple que cela ! Une fois que vous aurez rĂ©siliĂ© votre abonnement, il restera actif pour le reste de la pĂ©riode pour laquelle vous avez payĂ©. DĂ©couvrez-en plus ici.
Puis-je / comment puis-je télécharger des livres ?
Pour le moment, tous nos livres en format ePub adaptĂ©s aux mobiles peuvent ĂȘtre tĂ©lĂ©chargĂ©s via l’application. La plupart de nos PDF sont Ă©galement disponibles en tĂ©lĂ©chargement et les autres seront tĂ©lĂ©chargeables trĂšs prochainement. DĂ©couvrez-en plus ici.
Quelle est la différence entre les formules tarifaires ?
Les deux abonnements vous donnent un accĂšs complet Ă  la bibliothĂšque et Ă  toutes les fonctionnalitĂ©s de Perlego. Les seules diffĂ©rences sont les tarifs ainsi que la pĂ©riode d’abonnement : avec l’abonnement annuel, vous Ă©conomiserez environ 30 % par rapport Ă  12 mois d’abonnement mensuel.
Qu’est-ce que Perlego ?
Nous sommes un service d’abonnement Ă  des ouvrages universitaires en ligne, oĂč vous pouvez accĂ©der Ă  toute une bibliothĂšque pour un prix infĂ©rieur Ă  celui d’un seul livre par mois. Avec plus d’un million de livres sur plus de 1 000 sujets, nous avons ce qu’il vous faut ! DĂ©couvrez-en plus ici.
Prenez-vous en charge la synthÚse vocale ?
Recherchez le symbole Écouter sur votre prochain livre pour voir si vous pouvez l’écouter. L’outil Écouter lit le texte Ă  haute voix pour vous, en surlignant le passage qui est en cours de lecture. Vous pouvez le mettre sur pause, l’accĂ©lĂ©rer ou le ralentir. DĂ©couvrez-en plus ici.
Est-ce que Photovoltaic Solar Energy est un PDF/ePUB en ligne ?
Oui, vous pouvez accĂ©der Ă  Photovoltaic Solar Energy par AngĂšle Reinders, Pierre Verlinden, Wilfried van Sark, Alexandre Freundlich en format PDF et/ou ePUB ainsi qu’à d’autres livres populaires dans TecnologĂ­a e ingenierĂ­a et Recursos energĂ©ticos. Nous disposons de plus d’un million d’ouvrages Ă  dĂ©couvrir dans notre catalogue.

Informations

Éditeur
Wiley
Année
2017
ISBN
9781118927489

Part one
Introduction to Photovoltaics

1.1
Introduction

AngĂšle Reinders1, Wilfried van Sark2, and Pierre Verlinden3
1 University of Twente, Enschede, The Netherlands
2 Copernicus Institute, Utrecht University, The Netherlands
3 Trina Solar, Changzhou, Jiangsu, China

1.1.1 Introduction to Photovoltaic Solar Energy

At present, photovoltaic (PV) systems have become an established part of the electrical energy mix in Europe, the United States, Japan, China, Australia and many more countries all around the globe. So far, no single other energy technology has shown such a distributed set-up and modularity as PV systems. Stand-alone and grid-connected applications provide power in an extended range, from tenths of watts up to hundreds of megawatts. At the end of 2015, the total global cumulative capacity of installed PV systems exceeded 227 gigawatts, and this capacity is equivalent to about 280 coal-fired plants. For instance, in 2014, in Germany, Italy and Greece, 6 to 11% of the annual electricity generated originated from PV systems, while across Europe PV systems account for 3.5% of the electricity need (IEA-PVPS, 2015). According to the IEA (2016), electricity generated by PV systems contributed 0.8% of the total electricity production in the USA, in Japan 3.9%, and in China 1.0%.
Originally the development of PV technology was driven by the need for reliable and durable electricity systems for space applications, such as satellites. Nowadays, the implementation of PV systems in our society is driven by the need to reduce CO2 emissions. Since PV systems have an extremely low CO2 emission per kWh of electricity generated, namely below 30 g/kWh, see Figure 1.1.1 and Louwen et al. (2015), they are considered by policy-makers an important technology to slow down global warming due to the increased greenhouse effect (IPCC, 2013). This should be compared with the amount of more than 800 g CO2/kWh emitted by coal-fired plants, see Figure 1.1.1. At present, all the major economies have policy targets to reduce greenhouse gas emissions, for instance, a 20% reduction of CO2 emission is set by 2020 for Europe, 40% by 2030 and a 80–95% cut in greenhouse gases by 2050 compared to 1990 levels (European Commission, 2011). To achieve these targets solar photovoltaic technologies will be unavoidable, as well as other sustainable energy technologies in combination with an increased energy efficiency of society. Therefore, we can expect further growth of the volume of PV systems in our electrical energy mix and in off-grid applications. According to Greenpeace’s (2015) updated Energy Revolution scenario, we can even expect a 100% sustainable energy supply, which will end global CO2 emissions, by 2050, which will be achieved by 20% of our electricity demand being produced by PV systems.
image
Figure 1.1.1 Comparison of CO2-equivalent emissions of various energy technologies. Note the logarithmic y-scale.
Courtesy of A. Reinders, University of Twente
The growth of the market for PV technologies brings economies of scales. In the past decade, economies of scales together with technological progress in solar cell efficiencies, standardization of technologies, improved manufacturing and lower costs of production of feedstock materials, such as silicon, have brought down the cost of, for example, silicon PV modules from $4/Wattpeak to less than $1/Wattpeak (see Chapter 13.1). Present record efficiencies of 21% for commercial PV modules will reduce these costs even more in the forthcoming years. Due to these low investment costs and low O&M costs, the price of PV electricity is able to compete with consumer electricity prices in many countries, thus realizing grid parity on the customer side of the meter (Hurtado Muñoz et al., 2014). Though incentives still remain necessary to overcome the hurdle of upfront investment costs at present, in the long run it seems feasible that PV technology will become an affordable self-sustained energy technology within the reach of many consumers, in particular in urbanized areas where the technology’s silent operation with zero emissions during use will perfectly fit into a built environment. Additiona...

Table des matiĂšres