The Physics of Microdroplets
eBook - ePub

The Physics of Microdroplets

Jean Berthier, Kenneth A. Brakke

Condividi libro
  1. English
  2. ePUB (disponibile sull'app)
  3. Disponibile su iOS e Android
eBook - ePub

The Physics of Microdroplets

Jean Berthier, Kenneth A. Brakke

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

The Physics of Microdroplets gives the reader the theoretical and numerical tools to understand, explain, calculate, and predict the often nonintuitive observed behavior of droplets in microsystems.

Microdrops and interfaces are now a common feature in most fluidic microsystems, from biology, to biotechnology, materials science, 3D-microelectronics, optofluidics, and mechatronics. On the other hand, the behavior of droplets and interfaces in today's microsystems is complicated and involves complex 3D geometrical considerations. From a numerical standpoint, the treatment of interfaces separating different immiscible phases is difficult.

After a chapter dedicated to the general theory of wetting, this practical book successively details:

  • The theory of 3D liquid interfaces
  • The formulas for volume and surface of sessile and pancake droplets
  • The behavior of sessile droplets
  • The behavior of droplets between tapered plates and in wedges
  • The behavior of droplets in microchannels
  • The effect of capillarity with the analysis of capillary rise
  • The onset of spontaneous capillary flow in open microfluidic systems
  • The interaction between droplets, like engulfment
  • The theory and application of electrowetting

  • The state of the art for the approach of 3D-microelectronics using capillary alignment

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
The Physics of Microdroplets è disponibile online in formato PDF/ePub?
Sì, puoi accedere a The Physics of Microdroplets di Jean Berthier, Kenneth A. Brakke in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technik & Maschinenbau e Mikroelektronik. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2012
ISBN
9781118401330
Edizione
1

Chapter 1

Fundamentals of Capillarity

1.1 Abstract

In this first chapter, the fundamentals of capillarity are presented. We follow a conventional approach [1], first presenting surface tension of an interface, which is the fundamental notion in capillarity theory; this notion leads naturally to that of wetting, then to Laplace’s law, and to the introduction of Young contact angles and capillary forces. Next, different applications of capillary forces are shown, and the problem of the measurement of surface tensions is presented.

1.2 Interfaces and Surface Tension

1.2.1 The Notion of Interface

Mathematically speaking, an interface is the geometrical surface that delimits two fluid domains. This definition implies that an interface has no thickness and is smooth (i.e. has no roughness). As practical as it is, this definition is in reality a schematic concept. The reality is more complex, the boundary between two immiscible liquids is somewhat blurred and the separation of the two fluids (water/air, water/oil, etc.) depends on molecular interactions between the molecules of each fluid [2] and on Brownian diffusion (thermal agitation). A microscopic view of the interface between two fluids looks more like the scheme of figure 1.1. However, in engineering applications, it is the macroscopic behavior of the interface that is the focus of attention, and the mathematical concept regains its utility. At a macroscopic size, the picture of figure 1.1 can be replaced by that of figure 1.2, where the interface is a mathematical surface without thickness and the contact angle θ is uniquely defined by the tangent to the surface at the contact line.
Figure 1.1 Schematic view of an interface at the molecular size.
Figure 1.2 Macroscopic view of the interface of a drop.
In a condensed state, molecules attract each other. Molecules located in the bulk of a liquid have interactions with neighboring molecules on all sides; these interactions are mostly van der Waals attractive interactions for organic liquids and hydrogen bonds for polar liquids like water [2]. On the other hand, molecules at an interface have interactions in a half space with molecules of the same liquid, and in the other half space interactions with molecules of the other fluid or gas (figure 1.3).
Figure 1.3 Simplified scheme of molecules near an air/water interface. In the bulk, molecules have interaction forces with all the neighboring molecules. At the interface, half of the interactions have disappeared.
Consider an interface between a liquid and a gas. In the bulk of the liquid, a molecule is in contact with 4 to 12 other molecules depending on the liquid (4 for water and 12 for simple molecules); at the interface this number is divided by two. Of course, a molecule is also in contact with gas molecules, but, due to the low densities of gases, there are fewer interactions and less attraction than on the liquid side. The result is that there is locally a dissymmetry in the interactions, which results in an excess of surface energy. At the macroscopic scale, a physical quantity called “surface tension” has been introduced in order to take into account this molecular effect. The surface tension has the dimensions of energy per unit area, and in the International System it is expressed in J/m2 or N/m (sometimes, it is more practical to use mN/m as a unit for surface tension). An estimate of the surface tension can be found by considering the molecules’ cohesive energy. If U is the total cohesive energy per molecule, a rough estimate of the energy excess of a molecule at the interface is U/2. Surface tension is a direct measure of this energy excess, and if δ is a characteristic molecular dimension and δ2 the associated molecular surface area, then the surface tension is approximately
(1.1)
equation
This relation shows that surface tension is important for liquids with large cohesive energy and small molecular dimension. This is why mercury has a large surface tension whereas oil and organic liquids have small surface tensions. Another consequence of this analysis is the fact that a fluid system will always act to minimize surface area: the larger the surface area, the larger the number of molecules at the interface and the larger the cohesive energy imbalance. Molecules at the interface always look for oth...

Indice dei contenuti