Natural Gas Engineering Handbook
eBook - ePub

Natural Gas Engineering Handbook

Boyan Guo, Ali Ghalambor

Condividi libro
  1. 472 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Natural Gas Engineering Handbook

Boyan Guo, Ali Ghalambor

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

The demand for energy consumption is increasing rapidly. To avoid the impending energy crunch, more producers are switching from oil to natural gas. While natural gas engineering is well documented through many sources, the computer applications that provide a crucial role in engineering design and analysis are not well published, and emerging technologies, such as shale gas drilling, are generating more advanced applications for engineers to utilize on the job. To keep producers updated, Boyun Guo and Ali Ghalambor have enhanced their best-selling manual, Natural Gas Engineering Handbook, to continue to provide upcoming and practicing engineers the full scope of natural gas engineering with a computer-assisted approach.

  • A focus on real-world essentials rather than theory
  • Illustrative examples throughout the text
  • Working spreadsheet programs for all the engineering calculations on a free and easy to use companion site
  • Exercise problems at the end of every chapter, including newly added questions utilizing the spreadsheet programs
  • Expanded sections covering today's technologies, such as multi-fractured horizontal wells and shale gas wells

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Natural Gas Engineering Handbook è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Natural Gas Engineering Handbook di Boyan Guo, Ali Ghalambor in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Fossil Fuels. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2014
ISBN
9780127999951
Edizione
2
Categoria
Fossil Fuels
Chapter 1

Introduction

1.1 What Is Natural Gas?

Natural gas is a subcategory of petroleum that is a naturally occurring, complex mixture of hydrocarbons, with a minor amount of inorganic compounds. Geologists and chemists agree that petroleum originates from plants and animal remains that accumulate on the sea/lake floor along with the sediments that form sedimentary rocks. The processes by which the parent organic material is converted into petroleum are not understood. The contributing factors are thought to be bacterial action; shearing pressure during compaction, heat, and natural distillation at depth; possible addition of hydrogen from deep-seated sources; presence of catalysts; and time (Allison and Palmer 1980).
Table 1-1 shows composition of a typical natural gas. It indicates that methane is a major component of the gas mixture. The inorganic compounds nitrogen, carbon dioxide, and hydrogen sulfide are not desirable because they are not combustible and cause corrosion and other problems in gas production and processing systems. Depending upon gas composition, especially the content of inorganic compounds, the heating value of natural gas usually varies from 700 Btu/scf to 1,600 Btu/scf.
Table 1-1
Composition of a Typical Natural Gas
Compound Mole Fraction
Methane 0.8407
Ethane 0.0586
Propane 0.0220
i-Butane 0.0035
n-Butane 0.0058
i-Pentane 0.0027
n-Pentane 0.0025
Hexane 0.0028
Heptanes and Heavier 0.0076
Carbon Dioxide 0.0130
Hydrogen Sulfide 0.0063
Nitrogen 0.0345
Total 1.0000
Natural gas accumulations in geological traps can be classified as reservoir, field, or pool. A reservoir is a porous and permeable underground formation containing an individual bank of hydrocarbons confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field is an area that consists of one or more reservoirs all related to the same structural feature. A pool contains one or more reservoirs in isolated structures. Wells in the same field can be classified as gas wells, condensate wells, and oil wells. Gas wells are wells with producing gas-oil-ratio (GOR) being greater than 100,000 scf/stb; condensate wells are those with producing GOR being less than 100,000 scf/stb but greater than 5,000 scf/stb; and wells with producing GOR being less than 5,000 scf/stb are classified as oil wells.
Because natural gas is petroleum in a gaseous state, it is always accompanied by oil that is liquid petroleum. There are three types of natural gases: nonassociated gas, associated gas, and gas condensate. Nonassociated gas is from reservoirs with minimal oil. Associated gas is the gas dissolved in oil under natural conditions in the oil reservoir. Gas condensate refers to gas with high content of liquid hydrocarbon at reduced pressures and temperatures.

1.2 Utilization of Natural Gas

Natural gas is one of the major fossil energy sources. When one standard cubic feet of natural gas is combusted, it generates 700 Btu to 1,600 Btu of heat, depending upon gas composition. Natural gas provided close to 24 percent of U.S. energy sources over the three-year period 2000–02. Natural gas is used as a source of energy in all sectors of the economy. Figure 1-1 shows that during the three-year period 2000–02, natural gas consumption was equitably distributed across all sectors of the U.S. economy (except transportation).
image
Figure 1-1 Natural gas is used as a source of energy in all sectors of the U.S. economy. (Louisiana Department of Natural Resources 2004)
Example Problem 1.1
Natural gas from the Schleicher County, Texas, Straw Reef has a heating value of 1,598 Btu/scf. If this gas is combusted to generate power of 1,000 kW, what is the required gas flow rate in Mscf/day? Assume that the overall efficiency is 50 percent (1 kW = 3,412 Btu/h).
Solution
Output power of the generator:
image
Fuel gas requirement:
image

1.3 Natural Gas Industry

Natural gas was once a by-product of crude oil production. Since its discovery in the United States in Fredonia, New York, in 1821, natural gas has been used as fuel in areas immediately surrounding the gas fields. In the early years of the natural gas industry, when gas accompanied crude oil, it had to find a market or be flared; in the absence of effective conservation practices, oil-well gas was often flared in huge quantities. Consequently, gas production at that time was often short-lived, and gas could be purchased as low as 1 or 2 cents per 1,000 cu ft in the field (Ikoku 1984).
The consumption of natural gas in all end-use classifications (residential, commercial, industrial, and power generation) has increased rapidly since World War II. This growth has resulted from several factors, including development of new markets, replacement of coal as fuel for providing space and industrial process heat, use of natural gas in making petrochemicals and fertilizers, and strong demand for low-sulfur fuels.
The rapidly growing energy demands of Western Europe, Japan, and the United States could not be satisfied without importing gas from far fields. Natural gas, liquefied by a refrigeration cycle, can now be transported efficiently and rapidly across the oceans of the world by insulated tankers. The use of refrigeration to liquefy natural gas, and hence reduce its volume to the point where it becomes economically attractive to transport across oceans by tanker, was first attempted on a small scale in Hungary in 1934 and later used in the United States for moving gas in liquid form from the gas fields in Louisiana up the Mississippi River to Chicago in 1951 (Ikoku 1984).
The first use of a similar process on a large scale outside the United States was the liquefaction by a refrigerative cycle of some of the gas from the Hassi R’Mel gas field in Algeria and the export from 1964 onward of the resultant liquefied natural gas (LNG) by specially designed insulated tankers to Britain and France. Natural gas is in this way reduced to about one six-hundredth of its original volume and the nonmethane components are largely eliminated. At the receiving terminals, the LNG is reconverted to a gaseous state by passage through a regasifying plant, whence it can be fed as required into the normal gas distribution grid of the importing country. Alternatively, it can be stored for future use in insulated tanks or subsurface storages. Apart from its obvious applications as a storable and transportable form of natural gas, LNG has many applications in its own right, particularly as a nonpolluting fuel for aircraft and ground vehicles. Current production from conventional sources is not sufficient to satisfy all demands for natural gas.

1.4 Natural Gas Reserves

Two terms are frequently used to express natural gas reserves: proved reserves and potential resources. Proved reserves are those quantities of gas that have been fo...

Indice dei contenuti