Natural Gas Engineering Handbook
eBook - ePub

Natural Gas Engineering Handbook

Boyan Guo, Ali Ghalambor

Buch teilen
  1. 472 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Natural Gas Engineering Handbook

Boyan Guo, Ali Ghalambor

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The demand for energy consumption is increasing rapidly. To avoid the impending energy crunch, more producers are switching from oil to natural gas. While natural gas engineering is well documented through many sources, the computer applications that provide a crucial role in engineering design and analysis are not well published, and emerging technologies, such as shale gas drilling, are generating more advanced applications for engineers to utilize on the job. To keep producers updated, Boyun Guo and Ali Ghalambor have enhanced their best-selling manual, Natural Gas Engineering Handbook, to continue to provide upcoming and practicing engineers the full scope of natural gas engineering with a computer-assisted approach.

  • A focus on real-world essentials rather than theory
  • Illustrative examples throughout the text
  • Working spreadsheet programs for all the engineering calculations on a free and easy to use companion site
  • Exercise problems at the end of every chapter, including newly added questions utilizing the spreadsheet programs
  • Expanded sections covering today's technologies, such as multi-fractured horizontal wells and shale gas wells

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Natural Gas Engineering Handbook als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Natural Gas Engineering Handbook von Boyan Guo, Ali Ghalambor im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Fossil Fuels. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Jahr
2014
ISBN
9780127999951
Chapter 1

Introduction

1.1 What Is Natural Gas?

Natural gas is a subcategory of petroleum that is a naturally occurring, complex mixture of hydrocarbons, with a minor amount of inorganic compounds. Geologists and chemists agree that petroleum originates from plants and animal remains that accumulate on the sea/lake floor along with the sediments that form sedimentary rocks. The processes by which the parent organic material is converted into petroleum are not understood. The contributing factors are thought to be bacterial action; shearing pressure during compaction, heat, and natural distillation at depth; possible addition of hydrogen from deep-seated sources; presence of catalysts; and time (Allison and Palmer 1980).
Table 1-1 shows composition of a typical natural gas. It indicates that methane is a major component of the gas mixture. The inorganic compounds nitrogen, carbon dioxide, and hydrogen sulfide are not desirable because they are not combustible and cause corrosion and other problems in gas production and processing systems. Depending upon gas composition, especially the content of inorganic compounds, the heating value of natural gas usually varies from 700 Btu/scf to 1,600 Btu/scf.
Table 1-1
Composition of a Typical Natural Gas
Compound Mole Fraction
Methane 0.8407
Ethane 0.0586
Propane 0.0220
i-Butane 0.0035
n-Butane 0.0058
i-Pentane 0.0027
n-Pentane 0.0025
Hexane 0.0028
Heptanes and Heavier 0.0076
Carbon Dioxide 0.0130
Hydrogen Sulfide 0.0063
Nitrogen 0.0345
Total 1.0000
Natural gas accumulations in geological traps can be classified as reservoir, field, or pool. A reservoir is a porous and permeable underground formation containing an individual bank of hydrocarbons confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field is an area that consists of one or more reservoirs all related to the same structural feature. A pool contains one or more reservoirs in isolated structures. Wells in the same field can be classified as gas wells, condensate wells, and oil wells. Gas wells are wells with producing gas-oil-ratio (GOR) being greater than 100,000 scf/stb; condensate wells are those with producing GOR being less than 100,000 scf/stb but greater than 5,000 scf/stb; and wells with producing GOR being less than 5,000 scf/stb are classified as oil wells.
Because natural gas is petroleum in a gaseous state, it is always accompanied by oil that is liquid petroleum. There are three types of natural gases: nonassociated gas, associated gas, and gas condensate. Nonassociated gas is from reservoirs with minimal oil. Associated gas is the gas dissolved in oil under natural conditions in the oil reservoir. Gas condensate refers to gas with high content of liquid hydrocarbon at reduced pressures and temperatures.

1.2 Utilization of Natural Gas

Natural gas is one of the major fossil energy sources. When one standard cubic feet of natural gas is combusted, it generates 700 Btu to 1,600 Btu of heat, depending upon gas composition. Natural gas provided close to 24 percent of U.S. energy sources over the three-year period 2000–02. Natural gas is used as a source of energy in all sectors of the economy. Figure 1-1 shows that during the three-year period 2000–02, natural gas consumption was equitably distributed across all sectors of the U.S. economy (except transportation).
image
Figure 1-1 Natural gas is used as a source of energy in all sectors of the U.S. economy. (Louisiana Department of Natural Resources 2004)
Example Problem 1.1
Natural gas from the Schleicher County, Texas, Straw Reef has a heating value of 1,598 Btu/scf. If this gas is combusted to generate power of 1,000 kW, what is the required gas flow rate in Mscf/day? Assume that the overall efficiency is 50 percent (1 kW = 3,412 Btu/h).
Solution
Output power of the generator:
image
Fuel gas requirement:
image

1.3 Natural Gas Industry

Natural gas was once a by-product of crude oil production. Since its discovery in the United States in Fredonia, New York, in 1821, natural gas has been used as fuel in areas immediately surrounding the gas fields. In the early years of the natural gas industry, when gas accompanied crude oil, it had to find a market or be flared; in the absence of effective conservation practices, oil-well gas was often flared in huge quantities. Consequently, gas production at that time was often short-lived, and gas could be purchased as low as 1 or 2 cents per 1,000 cu ft in the field (Ikoku 1984).
The consumption of natural gas in all end-use classifications (residential, commercial, industrial, and power generation) has increased rapidly since World War II. This growth has resulted from several factors, including development of new markets, replacement of coal as fuel for providing space and industrial process heat, use of natural gas in making petrochemicals and fertilizers, and strong demand for low-sulfur fuels.
The rapidly growing energy demands of Western Europe, Japan, and the United States could not be satisfied without importing gas from far fields. Natural gas, liquefied by a refrigeration cycle, can now be transported efficiently and rapidly across the oceans of the world by insulated tankers. The use of refrigeration to liquefy natural gas, and hence reduce its volume to the point where it becomes economically attractive to transport across oceans by tanker, was first attempted on a small scale in Hungary in 1934 and later used in the United States for moving gas in liquid form from the gas fields in Louisiana up the Mississippi River to Chicago in 1951 (Ikoku 1984).
The first use of a similar process on a large scale outside the United States was the liquefaction by a refrigerative cycle of some of the gas from the Hassi R’Mel gas field in Algeria and the export from 1964 onward of the resultant liquefied natural gas (LNG) by specially designed insulated tankers to Britain and France. Natural gas is in this way reduced to about one six-hundredth of its original volume and the nonmethane components are largely eliminated. At the receiving terminals, the LNG is reconverted to a gaseous state by passage through a regasifying plant, whence it can be fed as required into the normal gas distribution grid of the importing country. Alternatively, it can be stored for future use in insulated tanks or subsurface storages. Apart from its obvious applications as a storable and transportable form of natural gas, LNG has many applications in its own right, particularly as a nonpolluting fuel for aircraft and ground vehicles. Current production from conventional sources is not sufficient to satisfy all demands for natural gas.

1.4 Natural Gas Reserves

Two terms are frequently used to express natural gas reserves: proved reserves and potential resources. Proved reserves are those quantities of gas that have been fo...

Inhaltsverzeichnis