Tribology of Abrasive Machining Processes
eBook - ePub

Tribology of Abrasive Machining Processes

Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov, Ichiro Inaski

Condividi libro
  1. 751 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Tribology of Abrasive Machining Processes

Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov, Ichiro Inaski

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Recent and radically improved machining processes, from high wheel speeds to nanotechnology, have turned a spotlight on abrasive machining processes as a fertile area for further advancements. Written for researchers, students, engineers and technicians in manufacturing, this book presents a fundamental rethinking of important tribological elements of abrasive machining processes and their effects on process efficiency and product quality. Newer processes such as chemical mechanical polishing (CMP) and silicon wafer dicing can be better understood as tribological processes. Understanding the tribological principles of abrasive processes is crucial to discovering improvements in accuracy, production rate, and surface quality of products spanning all industries, from machine parts to ball bearings to contact lens to semiconductors.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Tribology of Abrasive Machining Processes è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Tribology of Abrasive Machining Processes di Ioan D. Marinescu, W. Brian Rowe, Boris Dimitrov, Ichiro Inaski in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Mechanical Engineering. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Anno
2004
ISBN
9780815519386
1
Introduction

1.1 ABRASIVE PROCESSES

Abrasive machining processes are manufacturing techniques which employ very hard granular particles in machining, abrading, or polishing to modify the shape and surface texture of manufactured parts.
A wide range of such processes is mostly used to produce high quality parts to high accuracy and to close tolerances. Examples range from very large parts such as machine slideways to small parts such as contact lenses, needles, electronic components, silicon wafers, and ball bearings.
While accuracy and surface texture requirements are common reasons for selecting abrasive processes, there is another common reason. Abrasive processes are the natural choice for machining and finishing hard materials and hardened surfaces.
Most abrasive processes may be categorized into one of four groups: (i) grinding, (ii) honing, (iii) lapping, (iv) polishing.
This is not a completely inclusive list, but the four groups cover a wide range of processes and are a sufficient representation for a study of fundamental characteristics of such processes. These four groups are illustrated in Fig. 1.1. Grinding and honing are processes which employ bonded or fixed abrasives within the abrasive tool, whereas lapping and polishing employ free abrasive particles, often suspended in a liquid or wax medium.
image
Figure 1.1 Basic principles of grinding, honing, lapping, and polishing.

1.1.1 Grinding

In grinding, the abrasive tool is a grinding wheel which moves at a high surface speed compared to other machining processes such as milling and turning. Surface speeds are typically in the range of 20 m/s (4,000 ft/min) to 45 m/s (9,000 ft/min) in conventional grinding. In high-speed grinding, the wheel moves at speeds up to 140 m/s with wheels especially designed to withstand the high bursting stresses. Speeds greatly in excess of 140 m/s may be employed, but the proportion of applications at such speeds is small due to the expense and sophistication of the machines and techniques involved.
Although grinding can take place without lubrication, wet grinding is preferred wherever possible due to the reduced frictional losses and improved quality of the surfaces produced. Commonly used lubricants include oil in water emulsions and neat oils.

1.1.2 Honing

In honing, the abrasive particles, or grains as they are commonly known, are fixed in a bonded tool as in grinding. The honing process is mainly used to achieve a finished surface in the bore of a cylinder. The honing stones are pressurized radially outwards against the bore. Honing is different than grinding in two ways.
First, in honing, the abrasive tool moves at a low speed relative to the workpiece. Typically, the surface speed is 0.2 m/s to 2m/s. Combined rotation and oscillation movements of the tool are designed to average out the removal of material over the surface of the workpiece and produce a characteristic “cross-hatch” pattern favored for oil retention in engine cylinder bores.
Another difference between honing and grinding is that a honing tool is flexibly aligned to the surface of the workpiece. This means that eccentricity of the bore relative to an outside diameter cannot be corrected.

1.1.3 Lapping

In lapping, free abrasive is introduced between a lap, which may be a cast iron plate, and the workpiece surface. The free abrasive is usually suspended in a liquid medium, such as oil, providing lubrication and helping to transport the abrasive. The lap and the abrasive are both subject to wear. To maintain the required geometry of the lap and of the workpiece surface, it is necessary to pay careful attention to the nature of the motions involved to average out the wear across the surface of the lap. Several laps may be employed and periodically interchanged to assist this process.

1.1.4 Polishing

Polishing, like lapping, also employs free abrasive. In this case, pressure is applied on the abrasive through a conformable pad or soft cloth. This allows the abrasive to follow the contours of the workpiece surface andlimits the penetration of individual grains into the surface. Polishing with a fine abrasive is a very gentle abrasive action between the grains and the workpiece, thus ensuring a very small scratch depth.
The main purpose of polishing is to modify the surface texture rather than the shape. Highly reflective mirror surfaces can be produced by polishing. Material is removed at a very low rate. Consequently, the geometry of the surface needs to be very close to the correct shape before polishing is commenced.

1.2 ABRASIVES

In all four classes of abrasive machining processes, the abrasive grain must be harder than the workpiece at the point of interaction. This means that the grain must be harder than the workpiece at the temperature of the interaction. Since these temperatures of short duration can be very high, the abrasive grains must retain their hardness even when hot. This is true in all abrasive processes, without exception, since if the workpiece is harder than the grain, it is the grain that will suffer the most wear.
Some typical hardness values of abrasive grains are given in Table 1.1 based on data published by de B...

Indice dei contenuti