Lithium-Ion Batteries and Solar Cells
eBook - ePub

Lithium-Ion Batteries and Solar Cells

Physical, Chemical, and Materials Properties

Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang

  1. 292 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Lithium-Ion Batteries and Solar Cells

Physical, Chemical, and Materials Properties

Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties presents a thorough investigation of diverse physical, chemical, and materials properties and special functionalities of lithium-ion batteries and solar cells. It covers theoretical simulations and high-resolution experimental measurements that promote a full understanding of the basic science to develop excellent device performance.



  • Employs first-principles and the machine learning method to fully explore the rich and unique phenomena of cathode, anode, and electrolyte (solid and liquid states) in lithium-ion batteries


  • Develops distinct experimental methods and techniques to enhance the performance of lithium-ion batteries and solar cells


  • Reviews syntheses, fabrication, and measurements


  • Discusses open issues, challenges, and potential commercial applications

This book is aimed at materials scientists, chemical engineers, and electrical engineers developing enhanced batteries and solar cells for peak performance.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Lithium-Ion Batteries and Solar Cells è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Lithium-Ion Batteries and Solar Cells di Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Technology & Engineering e Chemical & Biochemical Engineering. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
CRC Press
Anno
2021
ISBN
9781000337419

1 Introduction

Sanjaya Brahma, Ngoc Thanh Thuy Tran, and Wen-Dung Hsu
National Cheng Kung University
Chin-Lung Kuo
National Taiwan University
Shih-Yang Lin, Jow-Lay Huang, and Masahiro Yoshimura
National Cheng Kung University
Phung My Loan Le
University of Science, Vietnam National University
Jeng-Shiung Jan, Chia-Yun Chen, Peter Chen, and Ming-Fa Lin
National Cheng Kung University
Contents
1.1 Introduction
References

1.1 Introduction

How to get and use energies very efficiently is the mainstream research topic in terms of the basic sciences/advanced engineering and potential applications. The various theoretical models [1,2,3,4 and 5] and experimental syntheses [6,7,8,9,10 and 11] have been proposed to fully present the essential properties, outstanding functionalities, and commercialized products of green energy materials. The LIBs principally consist of cathode, electrolyte, and anode materials, in which the second systems might be either in solid [12] or in liquid states [13,14]. The numerical simulations, the first-principles calculations [15], neural network, and molecular dynamics [16] are frequently utilized to investigate their rich and unique properties, such as the growth processes, optimal geometric structures within large unit cells, electronic energy spectra, van Hove singularities in density of states, orbital hybridizations of chemical bonds, magnetic configurations, and special optical absorption spectra. The close combinations of core components in batteries are required to display the high-performance characteristics: low cost, lightweight, high safety, short charging time, long operation time, controllable temperature, and wide voltage range.
Up to now, there exist a lot of well-established products that cover the battery-driven cell phones and electric vehicles (EVs), the solar cell companies, the hydrogen-based cars, the water-induced electric power, the wind turbines, and so on. By the delicate numerical calculations, successful syntheses, detailed analysis, and well-behaved designs, this book thoroughly explores the diversified physical, chemical, and material phenomena of fundamental properties and the unusual functionalities in LIBs [1,2,3,4,5,6,7,8,9,10 and 11], Si nanowire-based solar cells [17], and perovskite solar cells [18]. Furthermore, the relations between the theoretical predictions and the high-resolution measurements are fully discussed. It provides very useful information about science bases, integrated engineering, and real applications.
Table 1.1 provides the diversified materials of anode, cathode, and electrolyte. The anode materials require the large capability of lithium intercalation/adsorption, high efficiency of charge/discharge, excellent cyclability, low reactivity against electrolyte, fast reaction rate, low cost, environmental-friendly, and nontoxic [19,20,21,22 and 23]. Graphite, which is one of the primary carbon materials, can serve as anode of Li+-ion-based batteries and is predominantly used in commercial products [23,24 and 25]. Lithium ions are electrochemically intercalated into the space between the graphitic sheets during the charging process and de-intercalated in the discharging process. A practical reversible capacity is greater than 360 mAh g−1 (theoretically at 372 mAh g−1) with the high discharge/charge efficiency [26,27 and 28]. However, graphite has a huge backward in volume expansion. There are new carbon materials, such as carbon nanofibers (CNF) [33,34 and 35] and carbon nanotubes (CNT) [31,32], where the single-walled CNTs are expected to exhibit reversible capacities about 300–600 mAh g−1 [32]. Besides the above materials, Li4Ti5O12 is known as a potential anode material for the next-generation LIBs [39,40 and 41]. In the current work, Li4Ti5O12 has been focused on the rich and unique essential properties with highly nonuniform environments, clearly revealing the thermodynamic stability, high cycle life performance, and safety, compared to other anode material candidates. The other materials are also available in anode electrode, e.g., TiO2 [19,20,21 and 22], patterned Si [29], Si film [30], Si nanowires [36,37], Si nanotubes [38], MoO3 [42], SnO2 [43], ZnO [44], Fe3O4/carbon foam [45], MnO [46], Co3O4 [47], GaSx [48,49], and MoS2 [50].
TABLE 1.1
Various Anodes, Electrolytes, and Cathodes in Li-Ion-Based Batteries
Materials
References
Anode
TiO2
[19,20,21 and 22]
Graphite
[23,24,25,26,27 and 28]
Patterned Si
[29]
Si film
[30]
Carbon nanotubes
[31,32]
Carbon nanofibers
[33,34 and 35]
Si nanowires
[36,37]
Si nanotubes
[38]
Li4Ti5O12
[39,40 and 41]
MoO3
[42]
SnO2
[43]
ZnO
[44]
Fe3O4/carbon foam
[45]
MnO
[46]
Co3O4
[47]
GaSx
[48,49]
MoS2
[50]
Cathode
V2O5
[53,54]
LiCoO2
[55,56]
Nano-LiCoO2
[57]
LiMn2O4
[58]
Li[Li0.20Mn0.54Ni0.13Co0.13]O2
[59]
LiNi1/3Mn1/3Co1/3O2
[60,61]
LiMn1.5Ni0.5O4
[62,63]
0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2
[64]
Li1.2Ni0.2Mn0.6O2
[65]
LiNi0.5Mn1.5O4
[66]
FePO4
[67]
LiFe(Co/Ni)PO4
[68]
Solid-state electrolyte
Garnet (Li7La3Zr2O12)
[71]
Perovskite (Li3xLa2/3−xTiO3)
[72]
Na super-ionic conductor (NASICON)
[73]
LISICON
[74]
(LiMIV 2 (PO4)3 (MIV = Ti, Zr, Ge, and Hf)
[75]
LiAlOx
[76,77]
Li3PO4
[78]
Lithium silicate
[79]
Li (Ta/Nb)O3
[80,81]
Li3N
[82]
LiSiAlO2
[83]
Sulfide (Li4GeS4, Li10GeP2S12, Li2S-P2S5
[84]
Argyrodite (Li6PS5X (X = Cl, Br, I))
[85]
Anti-perovskite (Li3OX (X = Cl, Br, I))
[86]
LiSi/Ge/SnO
[87,88]
The most common cathode materials are LiCoO2 [55,56], Li-Mn-O [58], LiFePO4 [68], and lithium-layered metal oxides, mainly owing t...

Indice dei contenuti