Lithium-Ion Batteries and Solar Cells
eBook - ePub

Lithium-Ion Batteries and Solar Cells

Physical, Chemical, and Materials Properties

Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang

  1. 292 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Lithium-Ion Batteries and Solar Cells

Physical, Chemical, and Materials Properties

Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties presents a thorough investigation of diverse physical, chemical, and materials properties and special functionalities of lithium-ion batteries and solar cells. It covers theoretical simulations and high-resolution experimental measurements that promote a full understanding of the basic science to develop excellent device performance.



  • Employs first-principles and the machine learning method to fully explore the rich and unique phenomena of cathode, anode, and electrolyte (solid and liquid states) in lithium-ion batteries


  • Develops distinct experimental methods and techniques to enhance the performance of lithium-ion batteries and solar cells


  • Reviews syntheses, fabrication, and measurements


  • Discusses open issues, challenges, and potential commercial applications

This book is aimed at materials scientists, chemical engineers, and electrical engineers developing enhanced batteries and solar cells for peak performance.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Lithium-Ion Batteries and Solar Cells als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Lithium-Ion Batteries and Solar Cells von Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Technology & Engineering & Chemical & Biochemical Engineering. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

1 Introduction

Sanjaya Brahma, Ngoc Thanh Thuy Tran, and Wen-Dung Hsu
National Cheng Kung University
Chin-Lung Kuo
National Taiwan University
Shih-Yang Lin, Jow-Lay Huang, and Masahiro Yoshimura
National Cheng Kung University
Phung My Loan Le
University of Science, Vietnam National University
Jeng-Shiung Jan, Chia-Yun Chen, Peter Chen, and Ming-Fa Lin
National Cheng Kung University
Contents
1.1 Introduction
References

1.1 Introduction

How to get and use energies very efficiently is the mainstream research topic in terms of the basic sciences/advanced engineering and potential applications. The various theoretical models [1,2,3,4 and 5] and experimental syntheses [6,7,8,9,10 and 11] have been proposed to fully present the essential properties, outstanding functionalities, and commercialized products of green energy materials. The LIBs principally consist of cathode, electrolyte, and anode materials, in which the second systems might be either in solid [12] or in liquid states [13,14]. The numerical simulations, the first-principles calculations [15], neural network, and molecular dynamics [16] are frequently utilized to investigate their rich and unique properties, such as the growth processes, optimal geometric structures within large unit cells, electronic energy spectra, van Hove singularities in density of states, orbital hybridizations of chemical bonds, magnetic configurations, and special optical absorption spectra. The close combinations of core components in batteries are required to display the high-performance characteristics: low cost, lightweight, high safety, short charging time, long operation time, controllable temperature, and wide voltage range.
Up to now, there exist a lot of well-established products that cover the battery-driven cell phones and electric vehicles (EVs), the solar cell companies, the hydrogen-based cars, the water-induced electric power, the wind turbines, and so on. By the delicate numerical calculations, successful syntheses, detailed analysis, and well-behaved designs, this book thoroughly explores the diversified physical, chemical, and material phenomena of fundamental properties and the unusual functionalities in LIBs [1,2,3,4,5,6,7,8,9,10 and 11], Si nanowire-based solar cells [17], and perovskite solar cells [18]. Furthermore, the relations between the theoretical predictions and the high-resolution measurements are fully discussed. It provides very useful information about science bases, integrated engineering, and real applications.
Table 1.1 provides the diversified materials of anode, cathode, and electrolyte. The anode materials require the large capability of lithium intercalation/adsorption, high efficiency of charge/discharge, excellent cyclability, low reactivity against electrolyte, fast reaction rate, low cost, environmental-friendly, and nontoxic [19,20,21,22 and 23]. Graphite, which is one of the primary carbon materials, can serve as anode of Li+-ion-based batteries and is predominantly used in commercial products [23,24 and 25]. Lithium ions are electrochemically intercalated into the space between the graphitic sheets during the charging process and de-intercalated in the discharging process. A practical reversible capacity is greater than 360 mAh g−1 (theoretically at 372 mAh g−1) with the high discharge/charge efficiency [26,27 and 28]. However, graphite has a huge backward in volume expansion. There are new carbon materials, such as carbon nanofibers (CNF) [33,34 and 35] and carbon nanotubes (CNT) [31,32], where the single-walled CNTs are expected to exhibit reversible capacities about 300–600 mAh g−1 [32]. Besides the above materials, Li4Ti5O12 is known as a potential anode material for the next-generation LIBs [39,40 and 41]. In the current work, Li4Ti5O12 has been focused on the rich and unique essential properties with highly nonuniform environments, clearly revealing the thermodynamic stability, high cycle life performance, and safety, compared to other anode material candidates. The other materials are also available in anode electrode, e.g., TiO2 [19,20,21 and 22], patterned Si [29], Si film [30], Si nanowires [36,37], Si nanotubes [38], MoO3 [42], SnO2 [43], ZnO [44], Fe3O4/carbon foam [45], MnO [46], Co3O4 [47], GaSx [48,49], and MoS2 [50].
TABLE 1.1
Various Anodes, Electrolytes, and Cathodes in Li-Ion-Based Batteries
Materials
References
Anode
TiO2
[19,20,21 and 22]
Graphite
[23,24,25,26,27 and 28]
Patterned Si
[29]
Si film
[30]
Carbon nanotubes
[31,32]
Carbon nanofibers
[33,34 and 35]
Si nanowires
[36,37]
Si nanotubes
[38]
Li4Ti5O12
[39,40 and 41]
MoO3
[42]
SnO2
[43]
ZnO
[44]
Fe3O4/carbon foam
[45]
MnO
[46]
Co3O4
[47]
GaSx
[48,49]
MoS2
[50]
Cathode
V2O5
[53,54]
LiCoO2
[55,56]
Nano-LiCoO2
[57]
LiMn2O4
[58]
Li[Li0.20Mn0.54Ni0.13Co0.13]O2
[59]
LiNi1/3Mn1/3Co1/3O2
[60,61]
LiMn1.5Ni0.5O4
[62,63]
0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2
[64]
Li1.2Ni0.2Mn0.6O2
[65]
LiNi0.5Mn1.5O4
[66]
FePO4
[67]
LiFe(Co/Ni)PO4
[68]
Solid-state electrolyte
Garnet (Li7La3Zr2O12)
[71]
Perovskite (Li3xLa2/3−xTiO3)
[72]
Na super-ionic conductor (NASICON)
[73]
LISICON
[74]
(LiMIV 2 (PO4)3 (MIV = Ti, Zr, Ge, and Hf)
[75]
LiAlOx
[76,77]
Li3PO4
[78]
Lithium silicate
[79]
Li (Ta/Nb)O3
[80,81]
Li3N
[82]
LiSiAlO2
[83]
Sulfide (Li4GeS4, Li10GeP2S12, Li2S-P2S5
[84]
Argyrodite (Li6PS5X (X = Cl, Br, I))
[85]
Anti-perovskite (Li3OX (X = Cl, Br, I))
[86]
LiSi/Ge/SnO
[87,88]
The most common cathode materials are LiCoO2 [55,56], Li-Mn-O [58], LiFePO4 [68], and lithium-layered metal oxides, mainly owing t...

Inhaltsverzeichnis