Neuromorphic Engineering
eBook - ePub

Neuromorphic Engineering

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

Elishai Ezra Tsur

Condividi libro
  1. 328 pagine
  2. English
  3. ePUB (disponibile sull'app)
  4. Disponibile su iOS e Android
eBook - ePub

Neuromorphic Engineering

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

Elishai Ezra Tsur

Dettagli del libro
Anteprima del libro
Indice dei contenuti
Citazioni

Informazioni sul libro

The brain is not a glorified digital computer. It does not store information in registers, and it does not mathematically transform mental representations to establish perception or behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it destroy the world by having its emerged consciousness traveling in cyberspace. However, studying the brain's core computation architecture can inspire scientists, computer architects, and algorithm designers to think fundamentally differently about their craft.

Neuromorphic engineers have the ultimate goal of realizing machines with some aspects of cognitive intelligence. They aspire to design computing architectures that could surpass existing digital von Neumann-based computing architectures' performance. In that sense, brain research bears the promise of a new computing paradigm. As part of a complete cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers for neuro-robotics, artificial intelligence, and supercomputing applications.

The book presents neuromorphic engineering from three perspectives: the scientist, the computer architect, and the algorithm designer. It zooms in and out of the different disciplines, allowing readers with diverse backgrounds to understand and appreciate the field. Overall, the book covers the basics of neuronal modeling, neuromorphic circuits, neural architectures, event-based communication, and the neural engineering framework.

Domande frequenti

Come faccio ad annullare l'abbonamento?
È semplicissimo: basta accedere alla sezione Account nelle Impostazioni e cliccare su "Annulla abbonamento". Dopo la cancellazione, l'abbonamento rimarrà attivo per il periodo rimanente già pagato. Per maggiori informazioni, clicca qui
È possibile scaricare libri? Se sì, come?
Al momento è possibile scaricare tramite l'app tutti i nostri libri ePub mobile-friendly. Anche la maggior parte dei nostri PDF è scaricabile e stiamo lavorando per rendere disponibile quanto prima il download di tutti gli altri file. Per maggiori informazioni, clicca qui
Che differenza c'è tra i piani?
Entrambi i piani ti danno accesso illimitato alla libreria e a tutte le funzionalità di Perlego. Le uniche differenze sono il prezzo e il periodo di abbonamento: con il piano annuale risparmierai circa il 30% rispetto a 12 rate con quello mensile.
Cos'è Perlego?
Perlego è un servizio di abbonamento a testi accademici, che ti permette di accedere a un'intera libreria online a un prezzo inferiore rispetto a quello che pagheresti per acquistare un singolo libro al mese. Con oltre 1 milione di testi suddivisi in più di 1.000 categorie, troverai sicuramente ciò che fa per te! Per maggiori informazioni, clicca qui.
Perlego supporta la sintesi vocale?
Cerca l'icona Sintesi vocale nel prossimo libro che leggerai per verificare se è possibile riprodurre l'audio. Questo strumento permette di leggere il testo a voce alta, evidenziandolo man mano che la lettura procede. Puoi aumentare o diminuire la velocità della sintesi vocale, oppure sospendere la riproduzione. Per maggiori informazioni, clicca qui.
Neuromorphic Engineering è disponibile online in formato PDF/ePub?
Sì, puoi accedere a Neuromorphic Engineering di Elishai Ezra Tsur in formato PDF e/o ePub, così come ad altri libri molto apprezzati nelle sezioni relative a Informatica e Ingegneria informatica. Scopri oltre 1 milione di libri disponibili nel nostro catalogo.

Informazioni

Editore
CRC Press
Anno
2021
ISBN
9781000421323
Edizione
1
Argomento
Informatica

II

______________

The Scientist's Perspective

CHAPTER 4

Biological description of neuronal dynamics

Abstract
Neuronal models are the backbone of neuromorphic engineering. They span a wide range of complexities, trying to maintain the delicate balance between bio-plausibility and model tractability. This chapter will discuss the fundamentals of the scientist's perspective on neuromorphic engineering emphasizing the biological description of neuronal dynamics. The main aim of this chapter is to provide the necessary background to comprehensively understand the followed electrical and mathematical descriptions. The chapter will present a useful way to coarsely grasp some biological details which can later be utilized to design large-scale neuronal simulations and electrical implementations.

4.1 POTENTIALS AND SPIKES

As was described in Section 1.1, the neuron has the canonical description of being coarsely comprised of dendrites (signal input pathways), a soma (site of signals integration), and an axon (signal output pathway). Neurons typically communicate with (many) other neurons with spikes – temporary changes in voltage which propagate as impulses from the cell's soma through its axon to target neurons via synapses. In this chapter, the neuron's main features will be succinctly discussed. We will start by describing the maintenance of the neuron's resting potential, from which a spike or an action potential, can be initiated. We will briefly discuss the mechanism for the initiation of the action potential, its propagation through the axon, and its effect on the synapse and the postsynaptic cell.

4.1.1 The resting potential

A cell membrane separates the cell's interior (comprised of bio-molecules (proteins, DNA, etc.), specialized organelles, and structural filaments) from the environment. Particularly, the membrane separates populations of charged ions, where differences in the amount of charge on either side of the membrane create a potential difference or voltage. In a steady-state, where no net transport of ions through the membrane is apparent, the cell is at rest, and the membrane potential is termed a resting potential. What is the resting potential balancing? Two types of forces can drive ions across the membrane:
  • A chemical force Eion which drives molecules down their concentration gradient which, according to the Nernst equation, equals:
    Eion=C·ln[ion]out[ion]in (4.1)
    where [ion]in and [ion]out are the ion concentration in and outside of the cell, respectively, and C=25.2 mV at room temperature. This is an emerged entropic force, striving to have all ions homogeneously diffused.
  • An electrical force, created from an unequal distribution of negative and positive charges across the membrane. In the cell, there are fixed ions which cannot move across the membrane and thus creating an electrical force, that is striving to keep positively charged ions inside the cell.
Concerning each ion, when the electrical force balances the concentration gradient force, there is no net transport of that ion. This is the ion's equilibrium potential.
To approximate the membrane's resting potential, we will define the current flow of an ion Iion using Ohm's law:
Iion=gion·V(4.2)
where g is the ion conductance through the membrane, defined as the inverse of the resistance g=1R (g has the units of Siemens S) and V=VmEion.
In neurons, the two main participating ions in the creation of the membrane potential are sodium (Na+) and potassium (K+). Active channels Na+ K+ invest energy to drive Na+ ions out of the cell and K+ into the cell, thus creatin...

Indice dei contenuti