Neuromorphic Engineering
eBook - ePub

Neuromorphic Engineering

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

Elishai Ezra Tsur

Buch teilen
  1. 328 Seiten
  2. English
  3. ePUB (handyfreundlich)
  4. Über iOS und Android verfügbar
eBook - ePub

Neuromorphic Engineering

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

Elishai Ezra Tsur

Angaben zum Buch
Buchvorschau
Inhaltsverzeichnis
Quellenangaben

Über dieses Buch

The brain is not a glorified digital computer. It does not store information in registers, and it does not mathematically transform mental representations to establish perception or behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it destroy the world by having its emerged consciousness traveling in cyberspace. However, studying the brain's core computation architecture can inspire scientists, computer architects, and algorithm designers to think fundamentally differently about their craft.

Neuromorphic engineers have the ultimate goal of realizing machines with some aspects of cognitive intelligence. They aspire to design computing architectures that could surpass existing digital von Neumann-based computing architectures' performance. In that sense, brain research bears the promise of a new computing paradigm. As part of a complete cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers for neuro-robotics, artificial intelligence, and supercomputing applications.

The book presents neuromorphic engineering from three perspectives: the scientist, the computer architect, and the algorithm designer. It zooms in and out of the different disciplines, allowing readers with diverse backgrounds to understand and appreciate the field. Overall, the book covers the basics of neuronal modeling, neuromorphic circuits, neural architectures, event-based communication, and the neural engineering framework.

Häufig gestellte Fragen

Wie kann ich mein Abo kündigen?
Gehe einfach zum Kontobereich in den Einstellungen und klicke auf „Abo kündigen“ – ganz einfach. Nachdem du gekündigt hast, bleibt deine Mitgliedschaft für den verbleibenden Abozeitraum, den du bereits bezahlt hast, aktiv. Mehr Informationen hier.
(Wie) Kann ich Bücher herunterladen?
Derzeit stehen all unsere auf Mobilgeräte reagierenden ePub-Bücher zum Download über die App zur Verfügung. Die meisten unserer PDFs stehen ebenfalls zum Download bereit; wir arbeiten daran, auch die übrigen PDFs zum Download anzubieten, bei denen dies aktuell noch nicht möglich ist. Weitere Informationen hier.
Welcher Unterschied besteht bei den Preisen zwischen den Aboplänen?
Mit beiden Aboplänen erhältst du vollen Zugang zur Bibliothek und allen Funktionen von Perlego. Die einzigen Unterschiede bestehen im Preis und dem Abozeitraum: Mit dem Jahresabo sparst du auf 12 Monate gerechnet im Vergleich zum Monatsabo rund 30 %.
Was ist Perlego?
Wir sind ein Online-Abodienst für Lehrbücher, bei dem du für weniger als den Preis eines einzelnen Buches pro Monat Zugang zu einer ganzen Online-Bibliothek erhältst. Mit über 1 Million Büchern zu über 1.000 verschiedenen Themen haben wir bestimmt alles, was du brauchst! Weitere Informationen hier.
Unterstützt Perlego Text-zu-Sprache?
Achte auf das Symbol zum Vorlesen in deinem nächsten Buch, um zu sehen, ob du es dir auch anhören kannst. Bei diesem Tool wird dir Text laut vorgelesen, wobei der Text beim Vorlesen auch grafisch hervorgehoben wird. Du kannst das Vorlesen jederzeit anhalten, beschleunigen und verlangsamen. Weitere Informationen hier.
Ist Neuromorphic Engineering als Online-PDF/ePub verfügbar?
Ja, du hast Zugang zu Neuromorphic Engineering von Elishai Ezra Tsur im PDF- und/oder ePub-Format sowie zu anderen beliebten Büchern aus Informatica & Ingegneria informatica. Aus unserem Katalog stehen dir über 1 Million Bücher zur Verfügung.

Information

Verlag
CRC Press
Jahr
2021
ISBN
9781000421323

II

______________

The Scientist's Perspective

CHAPTER 4

Biological description of neuronal dynamics

Abstract
Neuronal models are the backbone of neuromorphic engineering. They span a wide range of complexities, trying to maintain the delicate balance between bio-plausibility and model tractability. This chapter will discuss the fundamentals of the scientist's perspective on neuromorphic engineering emphasizing the biological description of neuronal dynamics. The main aim of this chapter is to provide the necessary background to comprehensively understand the followed electrical and mathematical descriptions. The chapter will present a useful way to coarsely grasp some biological details which can later be utilized to design large-scale neuronal simulations and electrical implementations.

4.1 POTENTIALS AND SPIKES

As was described in Section 1.1, the neuron has the canonical description of being coarsely comprised of dendrites (signal input pathways), a soma (site of signals integration), and an axon (signal output pathway). Neurons typically communicate with (many) other neurons with spikes – temporary changes in voltage which propagate as impulses from the cell's soma through its axon to target neurons via synapses. In this chapter, the neuron's main features will be succinctly discussed. We will start by describing the maintenance of the neuron's resting potential, from which a spike or an action potential, can be initiated. We will briefly discuss the mechanism for the initiation of the action potential, its propagation through the axon, and its effect on the synapse and the postsynaptic cell.

4.1.1 The resting potential

A cell membrane separates the cell's interior (comprised of bio-molecules (proteins, DNA, etc.), specialized organelles, and structural filaments) from the environment. Particularly, the membrane separates populations of charged ions, where differences in the amount of charge on either side of the membrane create a potential difference or voltage. In a steady-state, where no net transport of ions through the membrane is apparent, the cell is at rest, and the membrane potential is termed a resting potential. What is the resting potential balancing? Two types of forces can drive ions across the membrane:
  • A chemical force Eion which drives molecules down their concentration gradient which, according to the Nernst equation, equals:
    Eion=C·ln[ion]out[ion]in (4.1)
    where [ion]in and [ion]out are the ion concentration in and outside of the cell, respectively, and C=25.2 mV at room temperature. This is an emerged entropic force, striving to have all ions homogeneously diffused.
  • An electrical force, created from an unequal distribution of negative and positive charges across the membrane. In the cell, there are fixed ions which cannot move across the membrane and thus creating an electrical force, that is striving to keep positively charged ions inside the cell.
Concerning each ion, when the electrical force balances the concentration gradient force, there is no net transport of that ion. This is the ion's equilibrium potential.
To approximate the membrane's resting potential, we will define the current flow of an ion Iion using Ohm's law:
Iion=gion·V(4.2)
where g is the ion conductance through the membrane, defined as the inverse of the resistance g=1R (g has the units of Siemens S) and V=VmEion.
In neurons, the two main participating ions in the creation of the membrane potential are sodium (Na+) and potassium (K+). Active channels Na+ K+ invest energy to drive Na+ ions out of the cell and K+ into the cell, thus creatin...

Inhaltsverzeichnis